Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciedf Unicode version

Theorem sbciedf 3363
 Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
sbcied.1
sbcied.2
sbciedf.3
sbciedf.4
Assertion
Ref Expression
sbciedf
Distinct variable group:   ,

Proof of Theorem sbciedf
StepHypRef Expression
1 sbcied.1 . 2
2 sbciedf.4 . 2
3 sbciedf.3 . . 3
4 sbcied.2 . . . 4
54ex 434 . . 3
63, 5alrimi 1877 . 2
7 sbciegft 3358 . 2
81, 2, 6, 7syl3anc 1228 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  =wceq 1395  F/wnf 1616  e.wcel 1818  [.wsbc 3327 This theorem is referenced by:  sbcied  3364  sbc2iegf  3402  csbiebt  3454  sbcnestgf  3839  ovmpt2dxf  6428  ovmpt2rdxf  32928 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-sbc 3328
 Copyright terms: Public domain W3C validator