MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcimdv Unicode version

Theorem sbcimdv 3396
Description: Substitution analog of Theorem 19.20 of [Margaris] p. 90 (alim 1632). (Contributed by NM, 11-Nov-2005.)
Hypothesis
Ref Expression
sbcimdv.1
Assertion
Ref Expression
sbcimdv
Distinct variable group:   ,

Proof of Theorem sbcimdv
StepHypRef Expression
1 sbcimdv.1 . . . 4
21alrimiv 1719 . . 3
3 spsbc 3340 . . 3
4 sbcim1 3376 . . 3
52, 3, 4syl56 34 . 2
6 sbcex 3337 . . . . 5
76con3i 135 . . . 4
87pm2.21d 106 . . 3
98a1d 25 . 2
105, 9pm2.61i 164 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393  e.wcel 1818   cvv 3109  [.wsbc 3327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-sbc 3328
  Copyright terms: Public domain W3C validator