Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcimdvOLD Unicode version

Theorem sbcimdvOLD 3397
 Description: Substitution analog of Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 11-Nov-2005.) Obsolete as of 17-Aug-2018. Use sbcimdv 3396 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
sbcimdv.1
Assertion
Ref Expression
sbcimdvOLD
Distinct variable group:   ,

Proof of Theorem sbcimdvOLD
StepHypRef Expression
1 sbcimdv.1 . . . . 5
21alrimiv 1719 . . . 4
3 spsbc 3340 . . . 4
42, 3syl5 32 . . 3
5 sbcimg 3369 . . 3
64, 5sylibd 214 . 2
76impcom 430 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  A.wal 1393  e.wcel 1818  [.wsbc 3327 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111  df-sbc 3328
 Copyright terms: Public domain W3C validator