![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbcnestgf | Unicode version |
Description: Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.) |
Ref | Expression |
---|---|
sbcnestgf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3329 | . . . . 5 | |
2 | csbeq1 3437 | . . . . . 6 | |
3 | 2 | sbceq1d 3332 | . . . . 5 |
4 | 1, 3 | bibi12d 321 | . . . 4 |
5 | 4 | imbi2d 316 | . . 3 |
6 | vex 3112 | . . . . 5 | |
7 | 6 | a1i 11 | . . . 4 |
8 | csbeq1a 3443 | . . . . . 6 | |
9 | 8 | sbceq1d 3332 | . . . . 5 |
10 | 9 | adantl 466 | . . . 4 |
11 | nfnf1 1899 | . . . . 5 | |
12 | 11 | nfal 1947 | . . . 4 |
13 | nfa1 1897 | . . . . 5 | |
14 | nfcsb1v 3450 | . . . . . 6 | |
15 | 14 | a1i 11 | . . . . 5 |
16 | sp 1859 | . . . . 5 | |
17 | 13, 15, 16 | nfsbcd 3348 | . . . 4 |
18 | 7, 10, 12, 17 | sbciedf 3363 | . . 3 |
19 | 5, 18 | vtoclg 3167 | . 2 |
20 | 19 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
F/ wnf 1616 e. wcel 1818 F/_ wnfc 2605
cvv 3109
[. wsbc 3327 [_ csb 3434 |
This theorem is referenced by: csbnestgf 3840 sbcnestg 3841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-sbc 3328 df-csb 3435 |
Copyright terms: Public domain | W3C validator |