![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbco3 | Unicode version |
Description: A composition law for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 18-Sep-2018.) |
Ref | Expression |
---|---|
sbco3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drsb1 2118 | . . 3 | |
2 | nfae 2056 | . . . 4 | |
3 | sbequ12a 1994 | . . . . 5 | |
4 | 3 | sps 1865 | . . . 4 |
5 | 2, 4 | sbbid 2144 | . . 3 |
6 | 1, 5 | bitr3d 255 | . 2 |
7 | sbco 2154 | . . . 4 | |
8 | 7 | sbbii 1746 | . . 3 |
9 | nfnae 2058 | . . . 4 | |
10 | nfnae 2058 | . . . 4 | |
11 | nfsb2 2100 | . . . 4 | |
12 | 9, 10, 11 | sbco2d 2159 | . . 3 |
13 | 8, 12 | syl5rbbr 260 | . 2 |
14 | 6, 13 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
A. wal 1393 [ wsb 1739 |
This theorem is referenced by: sbcom 2161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |