Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco4lem Unicode version

Theorem sbco4lem 2209
 Description: Lemma for sbco4 2210. It replaces the temporary variable with another temporary variable . (Contributed by Jim Kingdon, 26-Sep-2018.)
Assertion
Ref Expression
sbco4lem
Distinct variable groups:   ,,   ,,   ,,

Proof of Theorem sbco4lem
StepHypRef Expression
1 sbcom2 2189 . . 3
21sbbii 1746 . 2
3 nfv 1707 . . . . . . 7
43sbco2 2158 . . . . . 6
54sbbii 1746 . . . . 5
65sbbii 1746 . . . 4
76sbbii 1746 . . 3
8 nfv 1707 . . . 4
98sbco2 2158 . . 3
107, 9bitri 249 . 2
11 sbid2v 2201 . . . 4
1211sbbii 1746 . . 3
1312sbbii 1746 . 2
142, 10, 133bitr3i 275 1
 Colors of variables: wff setvar class Syntax hints:  <->wb 184  [wsb 1739 This theorem is referenced by:  sbco4  2210 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
 Copyright terms: Public domain W3C validator