MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcrex Unicode version

Theorem sbcrex 3412
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcrex
Distinct variable groups:   ,   ,   ,

Proof of Theorem sbcrex
StepHypRef Expression
1 nfcv 2619 . 2
2 sbcrext 3410 . 2
31, 2ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  F/_wnfc 2605  E.wrex 2808  [.wsbc 3327
This theorem is referenced by:  ac6sfi  7784  csbwrdg  12570  rexfiuz  13180  2sbcrex  30718  sbc2rex  30720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-v 3111  df-sbc 3328
  Copyright terms: Public domain W3C validator