![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbcrexgOLD | Unicode version |
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcrex 3412 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbcrexgOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3330 | . 2 | |
2 | dfsbcq2 3330 | . . 3 | |
3 | 2 | rexbidv 2968 | . 2 |
4 | nfcv 2619 | . . . 4 | |
5 | nfs1v 2181 | . . . 4 | |
6 | 4, 5 | nfrex 2920 | . . 3 |
7 | sbequ12 1992 | . . . 4 | |
8 | 7 | rexbidv 2968 | . . 3 |
9 | 6, 8 | sbie 2149 | . 2 |
10 | 1, 3, 9 | vtoclbg 3168 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 [ wsb 1739 e. wcel 1818
E. wrex 2808 [. wsbc 3327 |
This theorem is referenced by: 2sbcrexOLD 30719 sbc2rexgOLD 30721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |