![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbcrextOLD | Unicode version |
Description: Interchange class substitution and restricted existential quantifier. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) Obsolete as of 18-Aug-2018. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbcrextOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | sbcng 3368 | . . . . 5 | |
3 | 2 | adantr 465 | . . . 4 |
4 | sbcralt 3408 | . . . . . 6 | |
5 | nfnfc1 2622 | . . . . . . . . 9 | |
6 | id 22 | . . . . . . . . . 10 | |
7 | nfcvd 2620 | . . . . . . . . . 10 | |
8 | 6, 7 | nfeld 2627 | . . . . . . . . 9 |
9 | 5, 8 | nfan1 1927 | . . . . . . . 8 |
10 | sbcng 3368 | . . . . . . . . 9 | |
11 | 10 | adantl 466 | . . . . . . . 8 |
12 | 9, 11 | ralbid 2891 | . . . . . . 7 |
13 | 12 | ancoms 453 | . . . . . 6 |
14 | 4, 13 | bitrd 253 | . . . . 5 |
15 | 14 | notbid 294 | . . . 4 |
16 | 3, 15 | bitrd 253 | . . 3 |
17 | dfrex2 2908 | . . . 4 | |
18 | 17 | sbcbii 3387 | . . 3 |
19 | dfrex2 2908 | . . 3 | |
20 | 16, 18, 19 | 3bitr4g 288 | . 2 |
21 | 1, 20 | sylan 471 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 e. wcel 1818
F/_ wnfc 2605
A. wral 2807 E. wrex 2808 cvv 3109
[. wsbc 3327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-v 3111 df-sbc 3328 |
Copyright terms: Public domain | W3C validator |