![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbcsngOLD | Unicode version |
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) Obsolete as of 22-Aug-2018. Use ralsng 4064 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbcsngOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsnsg 4061 | . 2 | |
2 | 1 | bicomd 201 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
e. wcel 1818 A. wral 2807 [. wsbc 3327
{ csn 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-ral 2812 df-v 3111 df-sbc 3328 df-sn 4030 |
Copyright terms: Public domain | W3C validator |