![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbequ1 | Unicode version |
Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993.) |
Ref | Expression |
---|---|
sbequ1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.4 561 | . . 3 | |
2 | 19.8a 1857 | . . 3 | |
3 | df-sb 1740 | . . 3 | |
4 | 1, 2, 3 | sylanbrc 664 | . 2 |
5 | 4 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
E. wex 1612 [ wsb 1739 |
This theorem is referenced by: sbequ12 1992 dfsb2 2114 sbequi 2116 sbi1 2133 2eu6 2383 sb5ALT 33295 2pm13.193 33325 2pm13.193VD 33703 sb5ALTVD 33713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-sb 1740 |
Copyright terms: Public domain | W3C validator |