MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ1 Unicode version

Theorem sbequ1 1991
Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993.)
Assertion
Ref Expression
sbequ1

Proof of Theorem sbequ1
StepHypRef Expression
1 pm3.4 561 . . 3
2 19.8a 1857 . . 3
3 df-sb 1740 . . 3
41, 2, 3sylanbrc 664 . 2
54ex 434 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  E.wex 1612  [wsb 1739
This theorem is referenced by:  sbequ12  1992  dfsb2  2114  sbequi  2116  sbi1  2133  2eu6  2383  sb5ALT  33295  2pm13.193  33325  2pm13.193VD  33703  sb5ALTVD  33713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-sb 1740
  Copyright terms: Public domain W3C validator