MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ8ALT Unicode version

Theorem sbequ8ALT 2148
Description: Alternate proof of sbequ8 1744, shorter but requiring more axioms. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbequ8ALT

Proof of Theorem sbequ8ALT
StepHypRef Expression
1 equsb1 2107 . . 3
21a1bi 337 . 2
3 sbim 2136 . 2
42, 3bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  [wsb 1739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator