MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbhb Unicode version

Theorem sbhb 2182
Description: Two ways of expressing " is (effectively) not free in ." (Contributed by NM, 29-May-2009.)
Assertion
Ref Expression
sbhb
Distinct variable group:   ,

Proof of Theorem sbhb
StepHypRef Expression
1 nfv 1707 . . . 4
21sb8 2167 . . 3
32imbi2i 312 . 2
4 19.21v 1729 . 2
53, 4bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393  [wsb 1739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator