![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbi2 | Unicode version |
Description: Introduction of implication into substitution. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbn 2132 | . . 3 | |
2 | pm2.21 108 | . . . 4 | |
3 | 2 | sbimi 1745 | . . 3 |
4 | 1, 3 | sylbir 213 | . 2 |
5 | ax-1 6 | . . 3 | |
6 | 5 | sbimi 1745 | . 2 |
7 | 4, 6 | ja 161 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
[ wsb 1739 |
This theorem is referenced by: sbim 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |