MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbi2 Unicode version

Theorem sbi2 2134
Description: Introduction of implication into substitution. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
sbi2

Proof of Theorem sbi2
StepHypRef Expression
1 sbn 2132 . . 3
2 pm2.21 108 . . . 4
32sbimi 1745 . . 3
41, 3sylbir 213 . 2
5 ax-1 6 . . 3
65sbimi 1745 . 2
74, 6ja 161 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  [wsb 1739
This theorem is referenced by:  sbim  2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator