MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbid2v Unicode version

Theorem sbid2v 2201
Description: An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbid2v
Distinct variable group:   ,

Proof of Theorem sbid2v
StepHypRef Expression
1 nfv 1707 . 2
21sbid2 2155 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  [wsb 1739
This theorem is referenced by:  sbelx  2202  sbco4lem  2209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator