Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbiedv Unicode version

Theorem sbiedv 2152
 Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 2149). (Contributed by NM, 7-Jan-2017.)
Hypothesis
Ref Expression
sbiedv.1
Assertion
Ref Expression
sbiedv
Distinct variable groups:   ,   ,

Proof of Theorem sbiedv
StepHypRef Expression
1 nfv 1707 . 2
2 nfvd 1708 . 2
3 sbiedv.1 . . 3
43ex 434 . 2
51, 2, 4sbied 2151 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  [wsb 1739 This theorem is referenced by:  2mos  2375  iscatd2  15078  prtlem5  30597 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
 Copyright terms: Public domain W3C validator