![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbiedv | Unicode version |
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 2149). (Contributed by NM, 7-Jan-2017.) |
Ref | Expression |
---|---|
sbiedv.1 |
Ref | Expression |
---|---|
sbiedv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . 2 | |
2 | nfvd 1708 | . 2 | |
3 | sbiedv.1 | . . 3 | |
4 | 3 | ex 434 | . 2 |
5 | 1, 2, 4 | sbied 2151 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 [ wsb 1739 |
This theorem is referenced by: 2mos 2375 iscatd2 15078 prtlem5 30597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |