MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sblbis Unicode version

Theorem sblbis 2145
Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
Hypothesis
Ref Expression
sblbis.1
Assertion
Ref Expression
sblbis

Proof of Theorem sblbis
StepHypRef Expression
1 sbbi 2142 . 2
2 sblbis.1 . . 3
32bibi2i 313 . 2
41, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  [wsb 1739
This theorem is referenced by:  sbie  2149  sb8eu  2318  sb8euOLD  2319  sb8iota  5563  wl-sb8eut  30022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator