![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbnf2 | Unicode version |
Description: Two ways of expressing " is (effectively) not free in ." (Contributed by Gérard Lang, 14-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Sep-2018.) |
Ref | Expression |
---|---|
sbnf2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . . . . . 6 | |
2 | 1 | sb8e 2168 | . . . . 5 |
3 | nfv 1707 | . . . . . 6 | |
4 | 3 | sb8 2167 | . . . . 5 |
5 | 2, 4 | imbi12i 326 | . . . 4 |
6 | nf2 1960 | . . . 4 | |
7 | pm11.53v 1764 | . . . 4 | |
8 | 5, 6, 7 | 3bitr4i 277 | . . 3 |
9 | 3 | sb8e 2168 | . . . . . 6 |
10 | 1 | sb8 2167 | . . . . . 6 |
11 | 9, 10 | imbi12i 326 | . . . . 5 |
12 | pm11.53v 1764 | . . . . 5 | |
13 | 11, 12 | bitr4i 252 | . . . 4 |
14 | alcom 1845 | . . . 4 | |
15 | 6, 13, 14 | 3bitri 271 | . . 3 |
16 | 8, 15 | anbi12i 697 | . 2 |
17 | pm4.24 643 | . 2 | |
18 | 2albiim 1700 | . 2 | |
19 | 16, 17, 18 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 E. wex 1612
F/ wnf 1616 [ wsb 1739 |
This theorem is referenced by: sbnfc2 3854 nfnid 4681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |