![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbthlem7 | Unicode version |
Description: Lemma for sbth 7657. (Contributed by NM, 27-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 | |
sbthlem.3 |
Ref | Expression |
---|---|
sbthlem7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5632 | . . 3 | |
2 | funres 5632 | . . 3 | |
3 | dmres 5299 | . . . . . . . . 9 | |
4 | inss1 3717 | . . . . . . . . 9 | |
5 | 3, 4 | eqsstri 3533 | . . . . . . . 8 |
6 | ssrin 3722 | . . . . . . . 8 | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 |
8 | dmres 5299 | . . . . . . . . 9 | |
9 | inss1 3717 | . . . . . . . . 9 | |
10 | 8, 9 | eqsstri 3533 | . . . . . . . 8 |
11 | sslin 3723 | . . . . . . . 8 | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 |
13 | 7, 12 | sstri 3512 | . . . . . 6 |
14 | disjdif 3900 | . . . . . 6 | |
15 | 13, 14 | sseqtri 3535 | . . . . 5 |
16 | ss0 3816 | . . . . 5 | |
17 | 15, 16 | ax-mp 5 | . . . 4 |
18 | funun 5635 | . . . 4 | |
19 | 17, 18 | mpan2 671 | . . 3 |
20 | 1, 2, 19 | syl2an 477 | . 2 |
21 | sbthlem.3 | . . 3 | |
22 | 21 | funeqi 5613 | . 2 |
23 | 20, 22 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 { cab 2442
cvv 3109
\ cdif 3472 u. cun 3473 i^i cin 3474
C_ wss 3475 c0 3784 U. cuni 4249 `' ccnv 5003
dom cdm 5004 |` cres 5006 " cima 5007
Fun wfun 5587 |
This theorem is referenced by: sbthlem9 7655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-res 5016 df-fun 5595 |
Copyright terms: Public domain | W3C validator |