![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbthlem9 | Unicode version |
Description: Lemma for sbth 7657. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 | |
sbthlem.3 |
Ref | Expression |
---|---|
sbthlem9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.1 | . . . . . . . 8 | |
2 | sbthlem.2 | . . . . . . . 8 | |
3 | sbthlem.3 | . . . . . . . 8 | |
4 | 1, 2, 3 | sbthlem7 7653 | . . . . . . 7 |
5 | 1, 2, 3 | sbthlem5 7651 | . . . . . . . 8 |
6 | 5 | adantrl 715 | . . . . . . 7 |
7 | 4, 6 | anim12i 566 | . . . . . 6 |
8 | 7 | an42s 827 | . . . . 5 |
9 | 8 | adantlr 714 | . . . 4 |
10 | 9 | adantlr 714 | . . 3 |
11 | 1, 2, 3 | sbthlem8 7654 | . . . 4 |
12 | 11 | adantll 713 | . . 3 |
13 | simpr 461 | . . . . . . 7 | |
14 | 13 | anim1i 568 | . . . . . 6 |
15 | df-rn 5015 | . . . . . . 7 | |
16 | 1, 2, 3 | sbthlem6 7652 | . . . . . . 7 |
17 | 15, 16 | syl5eqr 2512 | . . . . . 6 |
18 | 14, 17 | sylanr1 652 | . . . . 5 |
19 | 18 | adantll 713 | . . . 4 |
20 | 19 | adantlr 714 | . . 3 |
21 | 10, 12, 20 | jca32 535 | . 2 |
22 | df-f1 5598 | . . . 4 | |
23 | df-f 5597 | . . . . . 6 | |
24 | df-fn 5596 | . . . . . . 7 | |
25 | 24 | anbi1i 695 | . . . . . 6 |
26 | 23, 25 | bitri 249 | . . . . 5 |
27 | 26 | anbi1i 695 | . . . 4 |
28 | 22, 27 | bitri 249 | . . 3 |
29 | df-f1 5598 | . . . 4 | |
30 | df-f 5597 | . . . . . 6 | |
31 | df-fn 5596 | . . . . . . 7 | |
32 | 31 | anbi1i 695 | . . . . . 6 |
33 | 30, 32 | bitri 249 | . . . . 5 |
34 | 33 | anbi1i 695 | . . . 4 |
35 | 29, 34 | bitri 249 | . . 3 |
36 | 28, 35 | anbi12i 697 | . 2 |
37 | dff1o4 5829 | . . 3 | |
38 | df-fn 5596 | . . . 4 | |
39 | df-fn 5596 | . . . 4 | |
40 | 38, 39 | anbi12i 697 | . . 3 |
41 | 37, 40 | bitri 249 | . 2 |
42 | 21, 36, 41 | 3imtr4i 266 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 { cab 2442
cvv 3109
\ cdif 3472 u. cun 3473 C_ wss 3475
U. cuni 4249 `' ccnv 5003 dom cdm 5004
ran crn 5005 |` cres 5006 " cima 5007
Fun wfun 5587
Fn wfn 5588 --> wf 5589 -1-1-> wf1 5590 -1-1-onto-> wf1o 5592 |
This theorem is referenced by: sbthlem10 7656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 |
Copyright terms: Public domain | W3C validator |