MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbtr Unicode version

Theorem sbtr 2164
Description: A partial converse to sbt 2162. If the substitution of a variable for a non-free one in a wff gives a theorem, then the original wff is a theorem. (Contributed by BJ, 15-Sep-2018.)
Hypotheses
Ref Expression
sbtr.nf
sbtr.1
Assertion
Ref Expression
sbtr

Proof of Theorem sbtr
StepHypRef Expression
1 sbtr.nf . . 3
21sbtrt 2163 . 2
3 sbtr.1 . 2
42, 3mpg 1620 1
Colors of variables: wff setvar class
Syntax hints:  F/wnf 1616  [wsb 1739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator