![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sbtr | Unicode version |
Description: A partial converse to sbt 2162. If the substitution of a variable for a non-free one in a wff gives a theorem, then the original wff is a theorem. (Contributed by BJ, 15-Sep-2018.) |
Ref | Expression |
---|---|
sbtr.nf | |
sbtr.1 |
Ref | Expression |
---|---|
sbtr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbtr.nf | . . 3 | |
2 | 1 | sbtrt 2163 | . 2 |
3 | sbtr.1 | . 2 | |
4 | 2, 3 | mpg 1620 | 1 |
Colors of variables: wff setvar class |
Syntax hints: F/ wnf 1616 [ wsb 1739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 df-sb 1740 |
Copyright terms: Public domain | W3C validator |