![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > scottex | Unicode version |
Description: Scott's trick collects all sets that have a certain property and are of the smallest possible rank. This theorem shows that the resulting collection, expressed as in Equation 9.3 of [Jech] p. 72, is a set. (Contributed by NM, 13-Oct-2003.) |
Ref | Expression |
---|---|
scottex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4582 | . . . 4 | |
2 | eleq1 2529 | . . . 4 | |
3 | 1, 2 | mpbiri 233 | . . 3 |
4 | rabexg 4602 | . . 3 | |
5 | 3, 4 | syl 16 | . 2 |
6 | neq0 3795 | . . 3 | |
7 | nfra1 2838 | . . . . . 6 | |
8 | nfcv 2619 | . . . . . 6 | |
9 | 7, 8 | nfrab 3039 | . . . . 5 |
10 | 9 | nfel1 2635 | . . . 4 |
11 | rsp 2823 | . . . . . . . 8 | |
12 | 11 | com12 31 | . . . . . . 7 |
13 | 12 | ralrimivw 2872 | . . . . . 6 |
14 | ss2rab 3575 | . . . . . 6 | |
15 | 13, 14 | sylibr 212 | . . . . 5 |
16 | rankon 8234 | . . . . . . . 8 | |
17 | fveq2 5871 | . . . . . . . . . . . 12 | |
18 | 17 | sseq1d 3530 | . . . . . . . . . . 11 |
19 | 18 | elrab 3257 | . . . . . . . . . 10 |
20 | 19 | simprbi 464 | . . . . . . . . 9 |
21 | 20 | rgen 2817 | . . . . . . . 8 |
22 | sseq2 3525 | . . . . . . . . . 10 | |
23 | 22 | ralbidv 2896 | . . . . . . . . 9 |
24 | 23 | rspcev 3210 | . . . . . . . 8 |
25 | 16, 21, 24 | mp2an 672 | . . . . . . 7 |
26 | bndrank 8280 | . . . . . . 7 | |
27 | 25, 26 | ax-mp 5 | . . . . . 6 |
28 | 27 | ssex 4596 | . . . . 5 |
29 | 15, 28 | syl 16 | . . . 4 |
30 | 10, 29 | exlimi 1912 | . . 3 |
31 | 6, 30 | sylbi 195 | . 2 |
32 | 5, 31 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 E. wex 1612 e. wcel 1818
A. wral 2807 E. wrex 2808 { crab 2811
cvv 3109
C_ wss 3475 c0 3784 con0 4883 ` cfv 5593 crnk 8202 |
This theorem is referenced by: scottexs 8326 cplem2 8329 kardex 8333 scottexf 30576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-reg 8039 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-r1 8203 df-rank 8204 |
Copyright terms: Public domain | W3C validator |