![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sdom2en01 | Unicode version |
Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
sdom2en01 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onfin2 7729 | . . . . 5 | |
2 | inss2 3718 | . . . . 5 | |
3 | 1, 2 | eqsstri 3533 | . . . 4 |
4 | 2onn 7308 | . . . 4 | |
5 | 3, 4 | sselii 3500 | . . 3 |
6 | sdomdom 7563 | . . 3 | |
7 | domfi 7761 | . . 3 | |
8 | 5, 6, 7 | sylancr 663 | . 2 |
9 | id 22 | . . . 4 | |
10 | 0fin 7767 | . . . 4 | |
11 | 9, 10 | syl6eqel 2553 | . . 3 |
12 | 1onn 7307 | . . . . 5 | |
13 | 3, 12 | sselii 3500 | . . . 4 |
14 | enfi 7756 | . . . 4 | |
15 | 13, 14 | mpbiri 233 | . . 3 |
16 | 11, 15 | jaoi 379 | . 2 |
17 | df2o3 7162 | . . . . . 6 | |
18 | 17 | eleq2i 2535 | . . . . 5 |
19 | fvex 5881 | . . . . . 6 | |
20 | 19 | elpr 4047 | . . . . 5 |
21 | 18, 20 | bitri 249 | . . . 4 |
22 | 21 | a1i 11 | . . 3 |
23 | cardnn 8365 | . . . . . 6 | |
24 | 4, 23 | ax-mp 5 | . . . . 5 |
25 | 24 | eleq2i 2535 | . . . 4 |
26 | finnum 8350 | . . . . 5 | |
27 | 2on 7157 | . . . . . 6 | |
28 | onenon 8351 | . . . . . 6 | |
29 | 27, 28 | ax-mp 5 | . . . . 5 |
30 | cardsdom2 8390 | . . . . 5 | |
31 | 26, 29, 30 | sylancl 662 | . . . 4 |
32 | 25, 31 | syl5bbr 259 | . . 3 |
33 | cardnueq0 8366 | . . . . 5 | |
34 | 26, 33 | syl 16 | . . . 4 |
35 | cardnn 8365 | . . . . . . 7 | |
36 | 12, 35 | ax-mp 5 | . . . . . 6 |
37 | 36 | eqeq2i 2475 | . . . . 5 |
38 | finnum 8350 | . . . . . . 7 | |
39 | 13, 38 | ax-mp 5 | . . . . . 6 |
40 | carden2 8389 | . . . . . 6 | |
41 | 26, 39, 40 | sylancl 662 | . . . . 5 |
42 | 37, 41 | syl5bbr 259 | . . . 4 |
43 | 34, 42 | orbi12d 709 | . . 3 |
44 | 22, 32, 43 | 3bitr3d 283 | . 2 |
45 | 8, 16, 44 | pm5.21nii 353 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 \/ wo 368
= wceq 1395 e. wcel 1818 i^i cin 3474
c0 3784 { cpr 4031 class class class wbr 4452
con0 4883 dom cdm 5004 ` cfv 5593
com 6700
c1o 7142
c2o 7143
cen 7533 cdom 7534 csdm 7535 cfn 7536 ccrd 8337 |
This theorem is referenced by: fin56 8794 en2top 19487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-1o 7149 df-2o 7150 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 |
Copyright terms: Public domain | W3C validator |