MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seeq1 Unicode version

Theorem seeq1 4856
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq1

Proof of Theorem seeq1
StepHypRef Expression
1 eqimss2 3556 . . 3
2 sess1 4852 . . 3
31, 2syl 16 . 2
4 eqimss 3555 . . 3
5 sess1 4852 . . 3
64, 5syl 16 . 2
73, 6impbid 191 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  =wceq 1395  C_wss 3475  Sewse 4841
This theorem is referenced by:  oieq1  7958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-v 3111  df-in 3482  df-ss 3489  df-br 4453  df-se 4844
  Copyright terms: Public domain W3C validator