![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > seqcaopr2 | Unicode version |
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
seqcaopr2.1 | |
seqcaopr2.2 | |
seqcaopr2.3 | |
seqcaopr2.4 | |
seqcaopr2.5 | |
seqcaopr2.6 | |
seqcaopr2.7 |
Ref | Expression |
---|---|
seqcaopr2 |
N
,,, ,,,,, ,,,,, ,M
,,,, Q
,,,,, ,,,, S
,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqcaopr2.1 | . 2 | |
2 | seqcaopr2.2 | . 2 | |
3 | seqcaopr2.4 | . 2 | |
4 | seqcaopr2.5 | . 2 | |
5 | seqcaopr2.6 | . 2 | |
6 | seqcaopr2.7 | . 2 | |
7 | elfzouz 11833 | . . . . 5 | |
8 | 7 | adantl 466 | . . . 4 |
9 | elfzouz2 11842 | . . . . . . . 8 | |
10 | 9 | adantl 466 | . . . . . . 7 |
11 | fzss2 11752 | . . . . . . 7 | |
12 | 10, 11 | syl 16 | . . . . . 6 |
13 | 12 | sselda 3503 | . . . . 5 |
14 | 5 | ralrimiva 2871 | . . . . . . 7 |
15 | 14 | adantr 465 | . . . . . 6 |
16 | fveq2 5871 | . . . . . . . 8 | |
17 | 16 | eleq1d 2526 | . . . . . . 7 |
18 | 17 | rspccva 3209 | . . . . . 6 |
19 | 15, 18 | sylan 471 | . . . . 5 |
20 | 13, 19 | syldan 470 | . . . 4 |
21 | 1 | adantlr 714 | . . . 4 |
22 | 8, 20, 21 | seqcl 12127 | . . 3 |
23 | fzofzp1 11909 | . . . 4 | |
24 | fveq2 5871 | . . . . . 6 | |
25 | 24 | eleq1d 2526 | . . . . 5 |
26 | 25 | rspccva 3209 | . . . 4 |
27 | 14, 23, 26 | syl2an 477 | . . 3 |
28 | 4 | ralrimiva 2871 | . . . . . . . 8 |
29 | fveq2 5871 | . . . . . . . . . 10 | |
30 | 29 | eleq1d 2526 | . . . . . . . . 9 |
31 | 30 | rspccva 3209 | . . . . . . . 8 |
32 | 28, 31 | sylan 471 | . . . . . . 7 |
33 | 32 | adantlr 714 | . . . . . 6 |
34 | 13, 33 | syldan 470 | . . . . 5 |
35 | 8, 34, 21 | seqcl 12127 | . . . 4 |
36 | fveq2 5871 | . . . . . . 7 | |
37 | 36 | eleq1d 2526 | . . . . . 6 |
38 | 37 | rspccva 3209 | . . . . 5 |
39 | 28, 23, 38 | syl2an 477 | . . . 4 |
40 | seqcaopr2.3 | . . . . . . . 8 | |
41 | 40 | anassrs 648 | . . . . . . 7 |
42 | 41 | ralrimivva 2878 | . . . . . 6 |
43 | 42 | ralrimivva 2878 | . . . . 5 |
44 | 43 | adantr 465 | . . . 4 |
45 | oveq1 6303 | . . . . . . . 8 | |
46 | 45 | oveq1d 6311 | . . . . . . 7 |
47 | oveq1 6303 | . . . . . . . 8 | |
48 | 47 | oveq1d 6311 | . . . . . . 7 |
49 | 46, 48 | eqeq12d 2479 | . . . . . 6 |
50 | 49 | 2ralbidv 2901 | . . . . 5 |
51 | oveq1 6303 | . . . . . . . 8 | |
52 | 51 | oveq2d 6312 | . . . . . . 7 |
53 | oveq2 6304 | . . . . . . . 8 | |
54 | 53 | oveq1d 6311 | . . . . . . 7 |
55 | 52, 54 | eqeq12d 2479 | . . . . . 6 |
56 | 55 | 2ralbidv 2901 | . . . . 5 |
57 | 50, 56 | rspc2va 3220 | . . . 4 |
58 | 35, 39, 44, 57 | syl21anc 1227 | . . 3 |
59 | oveq2 6304 | . . . . . 6 | |
60 | 59 | oveq1d 6311 | . . . . 5 |
61 | oveq1 6303 | . . . . . 6 | |
62 | 61 | oveq2d 6312 | . . . . 5 |
63 | 60, 62 | eqeq12d 2479 | . . . 4 |
64 | oveq2 6304 | . . . . . 6 | |
65 | 64 | oveq2d 6312 | . . . . 5 |
66 | oveq2 6304 | . . . . . 6 | |
67 | 66 | oveq2d 6312 | . . . . 5 |
68 | 65, 67 | eqeq12d 2479 | . . . 4 |
69 | 63, 68 | rspc2va 3220 | . . 3 |
70 | 22, 27, 58, 69 | syl21anc 1227 | . 2 |
71 | 1, 2, 3, 4, 5, 6, 70 | seqcaopr3 12142 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
C_ wss 3475 ` cfv 5593 (class class class)co 6296
1 c1 9514 caddc 9516 cuz 11110
cfz 11701 cfzo 11824 seq cseq 12107 |
This theorem is referenced by: seqcaopr 12144 sersub 12150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 df-seq 12108 |
Copyright terms: Public domain | W3C validator |