![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > seqcaopr3 | Unicode version |
Description: Lemma for seqcaopr2 12143. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
seqcaopr3.1 | |
seqcaopr3.2 | |
seqcaopr3.3 | |
seqcaopr3.4 | |
seqcaopr3.5 | |
seqcaopr3.6 | |
seqcaopr3.7 |
Ref | Expression |
---|---|
seqcaopr3 |
N
,,, ,,,, ,,,, ,M
,,, Q
,,,, ,,, S
,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqcaopr3.3 | . . 3 | |
2 | eluzfz2 11723 | . . 3 | |
3 | 1, 2 | syl 16 | . 2 |
4 | fveq2 5871 | . . . . 5 | |
5 | fveq2 5871 | . . . . . 6 | |
6 | fveq2 5871 | . . . . . 6 | |
7 | 5, 6 | oveq12d 6314 | . . . . 5 |
8 | 4, 7 | eqeq12d 2479 | . . . 4 |
9 | 8 | imbi2d 316 | . . 3 |
10 | fveq2 5871 | . . . . 5 | |
11 | fveq2 5871 | . . . . . 6 | |
12 | fveq2 5871 | . . . . . 6 | |
13 | 11, 12 | oveq12d 6314 | . . . . 5 |
14 | 10, 13 | eqeq12d 2479 | . . . 4 |
15 | 14 | imbi2d 316 | . . 3 |
16 | fveq2 5871 | . . . . 5 | |
17 | fveq2 5871 | . . . . . 6 | |
18 | fveq2 5871 | . . . . . 6 | |
19 | 17, 18 | oveq12d 6314 | . . . . 5 |
20 | 16, 19 | eqeq12d 2479 | . . . 4 |
21 | 20 | imbi2d 316 | . . 3 |
22 | fveq2 5871 | . . . . 5 | |
23 | fveq2 5871 | . . . . . 6 | |
24 | fveq2 5871 | . . . . . 6 | |
25 | 23, 24 | oveq12d 6314 | . . . . 5 |
26 | 22, 25 | eqeq12d 2479 | . . . 4 |
27 | 26 | imbi2d 316 | . . 3 |
28 | eluzfz1 11722 | . . . . . . 7 | |
29 | 1, 28 | syl 16 | . . . . . 6 |
30 | seqcaopr3.6 | . . . . . . 7 | |
31 | 30 | ralrimiva 2871 | . . . . . 6 |
32 | fveq2 5871 | . . . . . . . 8 | |
33 | fveq2 5871 | . . . . . . . . 9 | |
34 | fveq2 5871 | . . . . . . . . 9 | |
35 | 33, 34 | oveq12d 6314 | . . . . . . . 8 |
36 | 32, 35 | eqeq12d 2479 | . . . . . . 7 |
37 | 36 | rspcv 3206 | . . . . . 6 |
38 | 29, 31, 37 | sylc 60 | . . . . 5 |
39 | eluzel2 11115 | . . . . . . 7 | |
40 | 1, 39 | syl 16 | . . . . . 6 |
41 | seq1 12120 | . . . . . 6 | |
42 | 40, 41 | syl 16 | . . . . 5 |
43 | seq1 12120 | . . . . . . 7 | |
44 | seq1 12120 | . . . . . . 7 | |
45 | 43, 44 | oveq12d 6314 | . . . . . 6 |
46 | 40, 45 | syl 16 | . . . . 5 |
47 | 38, 42, 46 | 3eqtr4d 2508 | . . . 4 |
48 | 47 | a1i 11 | . . 3 |
49 | oveq1 6303 | . . . . . 6 | |
50 | elfzouz 11833 | . . . . . . . . 9 | |
51 | 50 | adantl 466 | . . . . . . . 8 |
52 | seqp1 12122 | . . . . . . . 8 | |
53 | 51, 52 | syl 16 | . . . . . . 7 |
54 | seqcaopr3.7 | . . . . . . . 8 | |
55 | fzofzp1 11909 | . . . . . . . . . . 11 | |
56 | 55 | adantl 466 | . . . . . . . . . 10 |
57 | 31 | adantr 465 | . . . . . . . . . 10 |
58 | fveq2 5871 | . . . . . . . . . . . 12 | |
59 | fveq2 5871 | . . . . . . . . . . . . 13 | |
60 | fveq2 5871 | . . . . . . . . . . . . 13 | |
61 | 59, 60 | oveq12d 6314 | . . . . . . . . . . . 12 |
62 | 58, 61 | eqeq12d 2479 | . . . . . . . . . . 11 |
63 | 62 | rspcv 3206 | . . . . . . . . . 10 |
64 | 56, 57, 63 | sylc 60 | . . . . . . . . 9 |
65 | 64 | oveq2d 6312 | . . . . . . . 8 |
66 | seqp1 12122 | . . . . . . . . . 10 | |
67 | seqp1 12122 | . . . . . . . . . 10 | |
68 | 66, 67 | oveq12d 6314 | . . . . . . . . 9 |
69 | 51, 68 | syl 16 | . . . . . . . 8 |
70 | 54, 65, 69 | 3eqtr4rd 2509 | . . . . . . 7 |
71 | 53, 70 | eqeq12d 2479 | . . . . . 6 |
72 | 49, 71 | syl5ibr 221 | . . . . 5 |
73 | 72 | expcom 435 | . . . 4 |
74 | 73 | a2d 26 | . . 3 |
75 | 9, 15, 21, 27, 48, 74 | fzind2 11924 | . 2 |
76 | 3, 75 | mpcom 36 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
` cfv 5593 (class class class)co 6296
1 c1 9514 caddc 9516 cz 10889 cuz 11110
cfz 11701 cfzo 11824 seq cseq 12107 |
This theorem is referenced by: seqcaopr2 12143 gsumzaddlem 16934 gsumzaddlemOLD 16936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 df-seq 12108 |
Copyright terms: Public domain | W3C validator |