![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > seqcl | Unicode version |
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
seqcl.1 | |
seqcl.2 | |
seqcl.3 |
Ref | Expression |
---|---|
seqcl |
M
, ,, ,S
, ,N
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqcl.1 | . . . 4 | |
2 | eluzfz1 11722 | . . . 4 | |
3 | 1, 2 | syl 16 | . . 3 |
4 | seqcl.2 | . . . 4 | |
5 | 4 | ralrimiva 2871 | . . 3 |
6 | fveq2 5871 | . . . . 5 | |
7 | 6 | eleq1d 2526 | . . . 4 |
8 | 7 | rspcv 3206 | . . 3 |
9 | 3, 5, 8 | sylc 60 | . 2 |
10 | seqcl.3 | . 2 | |
11 | eluzel2 11115 | . . . . . 6 | |
12 | 1, 11 | syl 16 | . . . . 5 |
13 | fzp1ss 11760 | . . . . 5 | |
14 | 12, 13 | syl 16 | . . . 4 |
15 | 14 | sselda 3503 | . . 3 |
16 | 15, 4 | syldan 470 | . 2 |
17 | 9, 10, 1, 16 | seqcl2 12125 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
C_ wss 3475 ` cfv 5593 (class class class)co 6296
1 c1 9514 caddc 9516 cz 10889 cuz 11110
cfz 11701 seq cseq 12107 |
This theorem is referenced by: sermono 12139 seqsplit 12140 seqcaopr2 12143 seqf1olem2a 12145 seqf1olem2 12147 seqid3 12151 seqhomo 12154 seqz 12155 seqdistr 12158 serge0 12161 serle 12162 seqof 12164 seqcoll 12512 seqcoll2 12513 fsumcl2lem 13553 prodfn0 13703 prodfrec 13704 prodfdiv 13705 fprodcl2lem 13757 eulerthlem2 14312 gsumwsubmcl 16006 mulgnnsubcl 16154 gsumzcl2 16915 gsumzclOLD 16919 gsumzaddlem 16934 gsumzaddlemOLD 16936 gsummptfzcl 16996 lgscllem 23578 lgsval4a 23593 lgsneg 23594 lgsdir 23605 lgsdilem2 23606 lgsdi 23607 lgsne0 23608 gsumncl 28492 faclim 29171 mblfinlem2 30052 fmul01 31574 fmulcl 31575 fmuldfeq 31577 fmul01lt1lem1 31578 fmul01lt1lem2 31579 stoweidlem3 31785 stoweidlem42 31824 stoweidlem48 31830 wallispilem4 31850 wallispi 31852 wallispi2lem1 31853 wallispi2 31855 stirlinglem5 31860 stirlinglem7 31862 stirlinglem10 31865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-seq 12108 |
Copyright terms: Public domain | W3C validator |