MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq1d Unicode version

Theorem seqeq1d 12113
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.)
Hypothesis
Ref Expression
seqeqd.1
Assertion
Ref Expression
seqeq1d

Proof of Theorem seqeq1d
StepHypRef Expression
1 seqeqd.1 . 2
2 seqeq1 12110 . 2
31, 2syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  seqcseq 12107
This theorem is referenced by:  seqeq123d  12116  seqf1olem2  12147  bcval5  12396  bcn2  12397  seqshft  12918  iserex  13479  isershft  13486  isercoll2  13491  isumsplit  13652  cvgrat  13692  ntrivcvg  13706  ntrivcvgtail  13709  fprodser  13756  eftlub  13844  gsumval2a  15906  gsumccat  16009  mulgnndir  16164  geolim3  22735  fmul01lt1lem2  31579  stirlinglem7  31862  stirlinglem12  31867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-mpt 4512  df-cnv 5012  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fv 5601  df-recs 7061  df-rdg 7095  df-seq 12108
  Copyright terms: Public domain W3C validator