![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > seqfveq2 | Unicode version |
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
seqfveq2.1 | |
seqfveq2.2 | |
seqfveq2.3 | |
seqfveq2.4 |
Ref | Expression |
---|---|
seqfveq2 |
N
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqfveq2.3 | . . 3 | |
2 | eluzfz2 11723 | . . 3 | |
3 | 1, 2 | syl 16 | . 2 |
4 | eleq1 2529 | . . . . . 6 | |
5 | fveq2 5871 | . . . . . . 7 | |
6 | fveq2 5871 | . . . . . . 7 | |
7 | 5, 6 | eqeq12d 2479 | . . . . . 6 |
8 | 4, 7 | imbi12d 320 | . . . . 5 |
9 | 8 | imbi2d 316 | . . . 4 |
10 | eleq1 2529 | . . . . . 6 | |
11 | fveq2 5871 | . . . . . . 7 | |
12 | fveq2 5871 | . . . . . . 7 | |
13 | 11, 12 | eqeq12d 2479 | . . . . . 6 |
14 | 10, 13 | imbi12d 320 | . . . . 5 |
15 | 14 | imbi2d 316 | . . . 4 |
16 | eleq1 2529 | . . . . . 6 | |
17 | fveq2 5871 | . . . . . . 7 | |
18 | fveq2 5871 | . . . . . . 7 | |
19 | 17, 18 | eqeq12d 2479 | . . . . . 6 |
20 | 16, 19 | imbi12d 320 | . . . . 5 |
21 | 20 | imbi2d 316 | . . . 4 |
22 | eleq1 2529 | . . . . . 6 | |
23 | fveq2 5871 | . . . . . . 7 | |
24 | fveq2 5871 | . . . . . . 7 | |
25 | 23, 24 | eqeq12d 2479 | . . . . . 6 |
26 | 22, 25 | imbi12d 320 | . . . . 5 |
27 | 26 | imbi2d 316 | . . . 4 |
28 | seqfveq2.2 | . . . . . . 7 | |
29 | seqfveq2.1 | . . . . . . . . 9 | |
30 | eluzelz 11119 | . . . . . . . . 9 | |
31 | 29, 30 | syl 16 | . . . . . . . 8 |
32 | seq1 12120 | . . . . . . . 8 | |
33 | 31, 32 | syl 16 | . . . . . . 7 |
34 | 28, 33 | eqtr4d 2501 | . . . . . 6 |
35 | 34 | a1d 25 | . . . . 5 |
36 | 35 | a1i 11 | . . . 4 |
37 | peano2fzr 11728 | . . . . . . . . . 10 | |
38 | 37 | adantl 466 | . . . . . . . . 9 |
39 | 38 | expr 615 | . . . . . . . 8 |
40 | 39 | imim1d 75 | . . . . . . 7 |
41 | oveq1 6303 | . . . . . . . . . 10 | |
42 | simpl 457 | . . . . . . . . . . . . 13 | |
43 | uztrn 11126 | . . . . . . . . . . . . 13 | |
44 | 42, 29, 43 | syl2anr 478 | . . . . . . . . . . . 12 |
45 | seqp1 12122 | . . . . . . . . . . . 12 | |
46 | 44, 45 | syl 16 | . . . . . . . . . . 11 |
47 | seqp1 12122 | . . . . . . . . . . . . 13 | |
48 | 47 | ad2antrl 727 | . . . . . . . . . . . 12 |
49 | eluzp1p1 11135 | . . . . . . . . . . . . . . . 16 | |
50 | 49 | ad2antrl 727 | . . . . . . . . . . . . . . 15 |
51 | elfzuz3 11714 | . . . . . . . . . . . . . . . 16 | |
52 | 51 | ad2antll 728 | . . . . . . . . . . . . . . 15 |
53 | elfzuzb 11711 | . . . . . . . . . . . . . . 15 | |
54 | 50, 52, 53 | sylanbrc 664 | . . . . . . . . . . . . . 14 |
55 | seqfveq2.4 | . . . . . . . . . . . . . . . 16 | |
56 | 55 | ralrimiva 2871 | . . . . . . . . . . . . . . 15 |
57 | 56 | adantr 465 | . . . . . . . . . . . . . 14 |
58 | fveq2 5871 | . . . . . . . . . . . . . . . 16 | |
59 | fveq2 5871 | . . . . . . . . . . . . . . . 16 | |
60 | 58, 59 | eqeq12d 2479 | . . . . . . . . . . . . . . 15 |
61 | 60 | rspcv 3206 | . . . . . . . . . . . . . 14 |
62 | 54, 57, 61 | sylc 60 | . . . . . . . . . . . . 13 |
63 | 62 | oveq2d 6312 | . . . . . . . . . . . 12 |
64 | 48, 63 | eqtr4d 2501 | . . . . . . . . . . 11 |
65 | 46, 64 | eqeq12d 2479 | . . . . . . . . . 10 |
66 | 41, 65 | syl5ibr 221 | . . . . . . . . 9 |
67 | 66 | expr 615 | . . . . . . . 8 |
68 | 67 | a2d 26 | . . . . . . 7 |
69 | 40, 68 | syld 44 | . . . . . 6 |
70 | 69 | expcom 435 | . . . . 5 |
71 | 70 | a2d 26 | . . . 4 |
72 | 9, 15, 21, 27, 36, 71 | uzind4 11168 | . . 3 |
73 | 1, 72 | mpcom 36 | . 2 |
74 | 3, 73 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
` cfv 5593 (class class class)co 6296
1 c1 9514 caddc 9516 cz 10889 cuz 11110
cfz 11701 seq cseq 12107 |
This theorem is referenced by: seqfeq2 12130 seqfveq 12131 seqz 12155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-seq 12108 |
Copyright terms: Public domain | W3C validator |