![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > seqof2 | Unicode version |
Description: Distribute function operation through a sequence. Maps-to notation version of seqof 12164. (Contributed by Mario Carneiro, 7-Jul-2017.) |
Ref | Expression |
---|---|
seqof2.1 | |
seqof2.2 | |
seqof2.3 | |
seqof2.4 |
Ref | Expression |
---|---|
seqof2 |
M
, ,N
, ,, , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqof2.1 | . . 3 | |
2 | seqof2.2 | . . 3 | |
3 | nfv 1707 | . . . . . 6 | |
4 | nffvmpt1 5879 | . . . . . . 7 | |
5 | nfcv 2619 | . . . . . . . 8 | |
6 | nffvmpt1 5879 | . . . . . . . 8 | |
7 | 5, 6 | nfmpt 4540 | . . . . . . 7 |
8 | 4, 7 | nfeq 2630 | . . . . . 6 |
9 | 3, 8 | nfim 1920 | . . . . 5 |
10 | eleq1 2529 | . . . . . . 7 | |
11 | 10 | anbi2d 703 | . . . . . 6 |
12 | fveq2 5871 | . . . . . . 7 | |
13 | fveq2 5871 | . . . . . . . 8 | |
14 | 13 | mpteq2dv 4539 | . . . . . . 7 |
15 | 12, 14 | eqeq12d 2479 | . . . . . 6 |
16 | 11, 15 | imbi12d 320 | . . . . 5 |
17 | seqof2.3 | . . . . . . . 8 | |
18 | 17 | sselda 3503 | . . . . . . 7 |
19 | 1 | adantr 465 | . . . . . . . 8 |
20 | mptexg 6142 | . . . . . . . 8 | |
21 | 19, 20 | syl 16 | . . . . . . 7 |
22 | eqid 2457 | . . . . . . . 8 | |
23 | 22 | fvmpt2 5963 | . . . . . . 7 |
24 | 18, 21, 23 | syl2anc 661 | . . . . . 6 |
25 | 18 | adantr 465 | . . . . . . . 8 |
26 | simpll 753 | . . . . . . . . 9 | |
27 | simpr 461 | . . . . . . . . 9 | |
28 | seqof2.4 | . . . . . . . . 9 | |
29 | 26, 25, 27, 28 | syl12anc 1226 | . . . . . . . 8 |
30 | eqid 2457 | . . . . . . . . 9 | |
31 | 30 | fvmpt2 5963 | . . . . . . . 8 |
32 | 25, 29, 31 | syl2anc 661 | . . . . . . 7 |
33 | 32 | mpteq2dva 4538 | . . . . . 6 |
34 | 24, 33 | eqtr4d 2501 | . . . . 5 |
35 | 9, 16, 34 | chvar 2013 | . . . 4 |
36 | nfcv 2619 | . . . . 5 | |
37 | nfcsb1v 3450 | . . . . . 6 | |
38 | nfcv 2619 | . . . . . 6 | |
39 | 37, 38 | nffv 5878 | . . . . 5 |
40 | csbeq1a 3443 | . . . . . 6 | |
41 | 40 | fveq1d 5873 | . . . . 5 |
42 | 36, 39, 41 | cbvmpt 4542 | . . . 4 |
43 | 35, 42 | syl6eq 2514 | . . 3 |
44 | 1, 2, 43 | seqof 12164 | . 2 |
45 | nfcv 2619 | . . 3 | |
46 | nfcv 2619 | . . . . 5 | |
47 | nfcv 2619 | . . . . 5 | |
48 | 46, 47, 37 | nfseq 12117 | . . . 4 |
49 | nfcv 2619 | . . . 4 | |
50 | 48, 49 | nffv 5878 | . . 3 |
51 | 40 | seqeq3d 12115 | . . . 4 |
52 | 51 | fveq1d 5873 | . . 3 |
53 | 45, 50, 52 | cbvmpt 4542 | . 2 |
54 | 44, 53 | syl6eqr 2516 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
[_ csb 3434 C_ wss 3475 e. cmpt 4510
` cfv 5593 (class class class)co 6296
oF cof 6538 cuz 11110
cfz 11701 seq cseq 12107 |
This theorem is referenced by: mtestbdd 22800 lgamgulm2 28578 lgamcvglem 28582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-of 6540 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-seq 12108 |
Copyright terms: Public domain | W3C validator |