MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp123 Unicode version

Theorem simp123 1130
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp123

Proof of Theorem simp123
StepHypRef Expression
1 simp23 1031 . 2
213ad2ant1 1017 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\w3a 973
This theorem is referenced by:  ax5seglem3  24234  axpasch  24244  exatleN  35128  ps-2b  35206  3atlem1  35207  3atlem2  35208  3atlem4  35210  3atlem5  35211  3atlem6  35212  2llnjaN  35290  2llnjN  35291  4atlem12b  35335  2lplnja  35343  2lplnj  35344  dalemrea  35352  dath2  35461  lneq2at  35502  osumcllem7N  35686  cdleme26ee  36086  cdlemg35  36439  cdlemg36  36440  cdlemj1  36547  cdlemk23-3  36628  cdlemk25-3  36630  cdlemk26b-3  36631  cdlemk27-3  36633  cdlemk28-3  36634  cdleml3N  36704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
  Copyright terms: Public domain W3C validator