![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > simp1bi | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 |
Ref | Expression |
---|---|
simp1bi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 | |
2 | 1 | biimpi 194 | . 2 |
3 | 2 | simp1d 1008 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ w3a 973 |
This theorem is referenced by: limord 4942 smores2 7044 smofvon2 7046 smofvon 7049 errel 7339 lincmb01cmp 11692 iccf1o 11693 elfznn0 11800 elfzouz 11833 ef01bndlem 13919 sin01bnd 13920 cos01bnd 13921 sin01gt0 13925 cos01gt0 13926 sin02gt0 13927 gzcn 14450 mresspw 14989 drsprs 15565 ipodrscl 15792 subgrcl 16206 pmtrfconj 16491 pgpprm 16613 slwprm 16629 efgsdmi 16750 efgsrel 16752 efgs1b 16754 efgsp1 16755 efgsres 16756 efgsfo 16757 efgredlema 16758 efgredlemf 16759 efgredlemd 16762 efgredlemc 16763 efgredlem 16765 efgrelexlemb 16768 efgcpbllemb 16773 srgcmn 17160 ringgrp 17203 irredcl 17353 lmodgrp 17519 lssss 17583 phllvec 18664 obsrcl 18754 locfintop 20022 fclstop 20512 tmdmnd 20574 tgpgrp 20577 trgtgp 20670 tdrgtrg 20675 ust0 20722 ngpgrp 21119 elii1 21435 elii2 21436 icopnfcnv 21442 icopnfhmeo 21443 iccpnfhmeo 21445 xrhmeo 21446 oprpiece1res1 21451 oprpiece1res2 21452 phtpcer 21495 pcoval2 21516 pcoass 21524 clmlmod 21567 cphphl 21618 cphnlm 21619 cphsca 21626 bnnvc 21779 uc1pcl 22544 mon1pcl 22545 sinq12ge0 22901 cosq14ge0 22904 cosord 22919 cos11 22920 recosf1o 22922 resinf1o 22923 efifo 22934 logrncn 22950 atanf 23211 atanneg 23238 efiatan 23243 atanlogaddlem 23244 atanlogadd 23245 atanlogsub 23247 efiatan2 23248 2efiatan 23249 tanatan 23250 areass 23289 dchrvmasumlem2 23683 dchrvmasumiflem1 23686 brbtwn2 24208 ax5seglem1 24231 ax5seglem2 24232 ax5seglem3 24234 ax5seglem5 24236 ax5seglem6 24237 ax5seglem9 24240 ax5seg 24241 axbtwnid 24242 axpaschlem 24243 axpasch 24244 axcontlem2 24268 axcontlem4 24270 axcontlem7 24273 2spotiundisj 25062 subgores 25306 subgoid 25309 subgoinv 25310 sticl 27134 hstcl 27136 omndmnd 27694 slmdcmn 27748 orngring 27790 elunitrn 27879 rrextnrg 27982 rrextdrg 27983 eulerpartlemd 28305 eulerpartlemf 28309 eulerpartlemgvv 28315 eulerpartlemgu 28316 eulerpartlemgh 28317 eulerpartlemgs2 28319 eulerpartlemn 28320 msrval 28898 mthmpps 28942 stoweidlem60 31842 fourierdlem111 32000 rngabl 32683 bnj564 33801 bnj1366 33888 bnj545 33953 bnj548 33955 bnj558 33960 bnj570 33963 bnj580 33971 bnj929 33994 bnj998 34014 bnj1006 34017 bnj1190 34064 bnj1523 34127 atllat 35025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |