![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > simp2bi | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 |
Ref | Expression |
---|---|
simp2bi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 | |
2 | 1 | biimpi 194 | . 2 |
3 | 2 | simp2d 1009 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ w3a 973 |
This theorem is referenced by: smodm 7041 erdm 7340 ixpfn 7495 winafp 9096 inar1 9174 inatsk 9177 tskuni 9182 grur1 9219 supmullem1 10534 supmullem2 10535 supmul 10536 eluzelz 11119 elfz3nn0 11801 cshco 12802 swrds2 12883 ef01bndlem 13919 sin01bnd 13920 cos01bnd 13921 sin01gt0 13925 bitsss 14076 smueqlem 14140 gznegcl 14453 gzcjcl 14454 gzaddcl 14455 gzmulcl 14456 gzabssqcl 14459 4sqlem4a 14469 cshwshashlem2 14581 structcnvcnv 14643 structfun 14644 xpsff1o 14965 mre1cl 14991 drsbn0 15566 subgss 16202 symgfixelsi 16460 psgnunilem5 16519 pgpgrp 16614 slwsubg 16630 efgs1b 16754 efgsp1 16755 efgsres 16756 efgredeu 16770 efgred2 16771 efgcpbllemb 16773 srgmgp 17162 ringmgp 17204 irrednu 17354 lmodring 17520 lmodprop2d 17572 lssn0 17587 phlsrng 18666 ocvss 18701 obsss 18755 locfinbas 20023 fclsfil 20511 tmdtps 20575 tgptmd 20578 trgring 20673 tdrgdrng 20676 ngpms 21120 icopnfcnv 21442 xrhmeo 21446 oprpiece1res2 21452 phtpcer 21495 pcoval2 21516 pcoass 21524 clmsca 21565 cphsqrtcl 21631 bncms 21783 itg2ge0 22142 uc1pn0 22546 mon1pn0 22547 sinq12ge0 22901 cosq14gt0 22903 cosq14ge0 22904 sinord 22921 recosf1o 22922 resinf1o 22923 logrnaddcl 22962 atanf 23211 atanneg 23238 atancj 23241 efiatan 23243 atanlogaddlem 23244 atanlogadd 23245 atanlogsub 23247 efiatan2 23248 2efiatan 23249 tanatan 23250 dvatan 23266 areambl 23288 rlimcnp 23295 emgt0 23336 harmoniclbnd 23338 harmonicbnd4 23340 2sqlem2 23639 2sqlem3 23641 dchrvmasumlem2 23683 dchrvmasumiflem1 23686 logdivbnd 23741 pntpbnd2 23772 pnt 23799 brbtwn2 24208 ax5seglem3 24234 ax5seglem6 24237 axpaschlem 24243 axcontlem2 24268 axcontlem4 24270 eengbas 24284 ebtwntg 24285 ecgrtg 24286 elntg 24287 clwwisshclwwlem 24806 subgores 25306 subgoid 25309 subgoinv 25310 subgoablo 25313 ghsubgolemOLD 25372 hst1a 27137 stge0 27143 sthil 27153 fsumrp0cl 27685 omndtos 27695 slmdsrg 27750 orngogrp 27791 elunitge0 27881 xrge0iifcnv 27915 xrge0iifcv 27916 xrge0iifiso 27917 rrextnlm 27984 rrextchr 27985 logbcl 28013 voliune 28201 volfiniune 28202 lgamgulmlem2 28572 msrval 28898 mclsppslem 28943 dfon2lem1 29215 dfrdg2 29228 cntotbnd 30292 heiborlem5 30311 heiborlem6 30312 stoweidlem60 31842 fourierdlem40 31929 fourierdlem78 31967 rngmgp 32684 bnj563 33800 bnj1212 33858 bnj1219 33859 bnj1366 33888 bnj1379 33889 bnj545 33953 bnj594 33970 bnj1118 34040 bnj1177 34062 bnj1190 34064 bnj1398 34090 bnj1417 34097 bnj1450 34106 bnj1312 34114 bnj1523 34127 bj-flbi3 34608 atl0dm 35027 dalem-ccly 35409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |