![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > simp3bi | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 |
Ref | Expression |
---|---|
simp3bi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 | |
2 | 1 | biimpi 194 | . 2 |
3 | 2 | simp3d 1010 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ w3a 973 |
This theorem is referenced by: limuni 4943 smores2 7044 ersym 7342 ertr 7345 fvixp 7494 undifixp 7525 fiint 7817 winalim2 9095 inar1 9174 supmullem1 10534 supmullem2 10535 supmul 10536 eluzle 11122 ef01bndlem 13919 sin01bnd 13920 cos01bnd 13921 sin01gt0 13925 divalglem6 14056 gznegcl 14453 gzcjcl 14454 gzaddcl 14455 gzmulcl 14456 gzabssqcl 14459 4sqlem4a 14469 prdsbasprj 14869 xpsff1o 14965 mreintcl 14992 drsdir 15564 subggrp 16204 pmtrfconj 16491 symggen 16495 psgnunilem1 16518 subgpgp 16617 slwispgp 16631 sylow2alem1 16637 oppglsm 16662 efgsdmi 16750 efgsrel 16752 efgsp1 16755 efgsres 16756 efgcpbllemb 16773 efgcpbl 16774 srgi 17163 srgrz 17177 srglz 17178 ringi 17211 ringsrg 17237 irredmul 17358 lmodlema 17517 lsscl 17589 phllmhm 18667 ipcj 18669 ipeq0 18673 ocvi 18700 obsip 18752 obsocv 18757 2ndcctbss 19956 locfinnei 20024 fclssscls 20519 tmdcn 20582 tgpinv 20584 trgtmd 20667 tdrgunit 20669 ngpds 21123 elii1 21435 elii2 21436 icopnfcnv 21442 icopnfhmeo 21443 iccpnfhmeo 21445 xrhmeo 21446 phtpcer 21495 pcoass 21524 clmsubrg 21566 cphnmfval 21639 bnsca 21778 uc1pldg 22549 mon1pldg 22550 sinq12ge0 22901 cosq14gt0 22903 cosq14ge0 22904 sinord 22921 recosf1o 22922 resinf1o 22923 logrnaddcl 22962 logimul 22999 dvlog2lem 23033 atanf 23211 atanneg 23238 atancj 23241 efiatan 23243 atanlogaddlem 23244 atanlogadd 23245 atanlogsub 23247 efiatan2 23248 2efiatan 23249 ressatans 23265 dvatan 23266 areaf 23291 harmonicubnd 23339 harmonicbnd4 23340 2sqlem2 23639 2sqlem3 23641 dchrvmasumiflem1 23686 pntpbnd2 23772 f1otrg 24174 f1otrge 24175 brbtwn2 24208 ax5seglem3 24234 axpaschlem 24243 axcontlem7 24273 subgores 25306 hstel2 27138 stle1 27144 stj 27154 xrge0adddir 27682 omndadd 27696 slmdlema 27746 lmodslmd 27747 orngmul 27793 xrge0iifcnv 27915 xrge0iifiso 27917 xrge0iifhom 27919 rrextcusp 27986 rrextust 27989 sibfinima 28281 eulerpartlemf 28309 eulerpartlemgvv 28315 lgamgulmlem2 28572 snmlflim 28777 msrval 28898 mclsssvlem 28922 mclsind 28930 cntotbnd 30292 heiborlem8 30314 dmnnzd 30472 kelac1 31009 binomcxplemcvg 31259 binomcxplemnotnn0 31261 stoweidlem39 31821 stoweidlem60 31842 fourierdlem40 31929 fourierdlem78 31967 isringrng 32687 bnj563 33800 bnj1366 33888 bnj1379 33889 bnj554 33957 bnj557 33959 bnj570 33963 bnj594 33970 bnj1001 34016 bnj1006 34017 bnj1097 34037 bnj1177 34062 bnj1388 34089 bnj1398 34090 bnj1450 34106 bnj1501 34123 bnj1523 34127 bj-flbi3 34608 atlex 35041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |