![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > simplbi2com | Unicode version |
Description: A deduction eliminating a conjunct, similar to simplbi2 625. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
Ref | Expression |
---|---|
simplbi2com.1 |
Ref | Expression |
---|---|
simplbi2com |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2com.1 | . . 3 | |
2 | 1 | simplbi2 625 | . 2 |
3 | 2 | com12 31 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 |
This theorem is referenced by: mo2OLD 2334 elres 5314 xpidtr 5394 elovmpt2rab 6521 elovmpt2rab1 6522 inficl 7905 cfslb2n 8669 repswcshw 12780 cshw1 12790 bezoutlem1 14176 bezoutlem3 14178 modprmn0modprm0 14332 cnprest 19790 haust1 19853 lly1stc 19997 3cyclfrgrarn1 25012 dfon2lem9 29223 funcoressn 32212 ndmaovdistr 32292 2elfz3nn0 32332 sb5ALT 33295 onfrALTlem2 33318 onfrALTlem2VD 33689 sb5ALTVD 33713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |