MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplbi2comt Unicode version

Theorem simplbi2comt 626
Description: Closed form of simplbi2com 627. (Contributed by Alan Sare, 22-Jul-2012.)
Assertion
Ref Expression
simplbi2comt

Proof of Theorem simplbi2comt
StepHypRef Expression
1 bi2 198 . 2
21expcomd 438 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369
This theorem is referenced by:  2uasbanhVD  33711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator