![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > simpli | Unicode version |
Description: Inference eliminating a conjunct. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
simpli.1 |
Ref | Expression |
---|---|
simpli |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpli.1 | . 2 | |
2 | simpl 457 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 |
This theorem is referenced by: pwundif 4792 tfr2b 7084 rdgfun 7101 oeoa 7265 oeoe 7267 ssdomg 7581 ordtypelem4 7967 ordtypelem6 7969 ordtypelem7 7970 r1limg 8210 rankwflemb 8232 r1elssi 8244 infxpenlem 8412 ackbij2 8644 wunom 9119 mulnzcnopr 10220 negiso 10544 infmsup 10546 hashunlei 12483 hashsslei 12484 cos01bnd 13921 cos1bnd 13922 cos2bnd 13923 sin4lt0 13930 egt2lt3 13939 epos 13940 divalglem5 14055 bitsf1o 14095 gcdaddmlem 14166 strlemor1 14724 zrhpsgnmhm 18620 resubgval 18645 re1r 18649 redvr 18653 refld 18655 txindis 20135 icopnfhmeo 21443 iccpnfcnv 21444 iccpnfhmeo 21445 xrhmeo 21446 cnheiborlem 21454 rrxcph 21824 volf 21940 i1f1 22097 itg11 22098 dvsin 22383 taylthlem2 22769 reefgim 22845 pilem3 22848 pigt2lt4 22849 pire 22851 pipos 22853 sinhalfpi 22861 tan4thpi 22907 sincos3rdpi 22909 circgrp 22939 circsubm 22940 rzgrp 22941 1cubrlem 23172 1cubr 23173 jensenlem2 23317 amgmlem 23319 emcllem6 23330 emcllem7 23331 emgt0 23336 harmonicbnd3 23337 ppiublem1 23477 chtub 23487 bposlem7 23565 lgsdir2lem4 23601 lgsdir2lem5 23602 chebbnd1 23657 mulog2sumlem2 23720 pntpbnd1a 23770 pntpbnd2 23772 pntlemb 23782 pntlemk 23791 qrng0 23806 qrng1 23807 qrngneg 23808 qrngdiv 23809 qabsabv 23814 2trllemE 24555 normlem7tALT 26036 hhsssh 26185 shintcli 26247 chintcli 26249 omlsi 26322 qlaxr3i 26554 lnophm 26938 nmcopex 26948 nmcoplb 26949 nmbdfnlbi 26968 nmcfnex 26972 nmcfnlb 26973 hmopidmch 27072 hmopidmpj 27073 chirred 27314 nn0archi 27833 xrge0iifiso 27917 xrge0iifmhm 27921 xrge0pluscn 27922 rezh 27952 qqh0 27965 qqh1 27966 qqhcn 27972 qqhucn 27973 rerrext 27990 cnrrext 27991 mbfmvolf 28237 subfacval3 28633 erdszelem5 28639 erdszelem8 28642 ghomgrpilem2 29026 filnetlem3 30198 filnetlem4 30199 reheibor 30335 fourierdlem68 31957 fourierdlem77 31966 fourierdlem80 31969 fouriersw 32014 etransclem23 32040 abcdta 32117 abcdtb 32118 abcdtc 32119 zlmodzxzsubm 32948 zlmodzxzldeplem3 33103 ldepsnlinclem1 33106 ldepsnlinclem2 33107 ldepsnlinc 33109 ene1 33168 empty-surprise 33197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |