![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > simplld | Unicode version |
Description: Deduction form of simpll 753, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplld.1 |
Ref | Expression |
---|---|
simplld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplld.1 | . . 3 | |
2 | 1 | simpld 459 | . 2 |
3 | 2 | simpld 459 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: lejoin1 15642 lemeet1 15656 reldir 15863 gexdvdsi 16603 lmhmlmod1 17679 oppne1 24114 opphllem4 24122 constr3cyclp 24662 grpolid 25221 rngoablo 25391 mfsdisj 28910 linethru 29803 fourierdlem37 31926 fourierdlem48 31937 fourierdlem93 31982 fourierdlem94 31983 fourierdlem104 31993 fourierdlem112 32001 fourierdlem113 32002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |