![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sin01bnd | Unicode version |
Description: Bounds on the sine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
sin01bnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 9661 | . . . . . . . . 9 | |
2 | 1re 9616 | . . . . . . . . 9 | |
3 | elioc2 11616 | . . . . . . . . 9 | |
4 | 1, 2, 3 | mp2an 672 | . . . . . . . 8 |
5 | 4 | simp1bi 1011 | . . . . . . 7 |
6 | eqid 2457 | . . . . . . . 8 | |
7 | 6 | resin4p 13873 | . . . . . . 7 |
8 | 5, 7 | syl 16 | . . . . . 6 |
9 | 8 | eqcomd 2465 | . . . . 5 |
10 | 5 | resincld 13878 | . . . . . . 7 |
11 | 10 | recnd 9643 | . . . . . 6 |
12 | 3nn0 10838 | . . . . . . . . . 10 | |
13 | reexpcl 12183 | . . . . . . . . . 10 | |
14 | 5, 12, 13 | sylancl 662 | . . . . . . . . 9 |
15 | 6nn 10722 | . . . . . . . . 9 | |
16 | nndivre 10596 | . . . . . . . . 9 | |
17 | 14, 15, 16 | sylancl 662 | . . . . . . . 8 |
18 | 5, 17 | resubcld 10012 | . . . . . . 7 |
19 | 18 | recnd 9643 | . . . . . 6 |
20 | ax-icn 9572 | . . . . . . . . . 10 | |
21 | 5 | recnd 9643 | . . . . . . . . . 10 |
22 | mulcl 9597 | . . . . . . . . . 10 | |
23 | 20, 21, 22 | sylancr 663 | . . . . . . . . 9 |
24 | 4nn0 10839 | . . . . . . . . 9 | |
25 | 6 | eftlcl 13842 | . . . . . . . . 9 |
26 | 23, 24, 25 | sylancl 662 | . . . . . . . 8 |
27 | 26 | imcld 13028 | . . . . . . 7 |
28 | 27 | recnd 9643 | . . . . . 6 |
29 | 11, 19, 28 | subaddd 9972 | . . . . 5 |
30 | 9, 29 | mpbird 232 | . . . 4 |
31 | 30 | fveq2d 5875 | . . 3 |
32 | 28 | abscld 13267 | . . . 4 |
33 | 26 | abscld 13267 | . . . 4 |
34 | absimle 13142 | . . . . 5 | |
35 | 26, 34 | syl 16 | . . . 4 |
36 | reexpcl 12183 | . . . . . . 7 | |
37 | 5, 24, 36 | sylancl 662 | . . . . . 6 |
38 | nndivre 10596 | . . . . . 6 | |
39 | 37, 15, 38 | sylancl 662 | . . . . 5 |
40 | 6 | ef01bndlem 13919 | . . . . 5 |
41 | 12 | a1i 11 | . . . . . . 7 |
42 | 4z 10923 | . . . . . . . . 9 | |
43 | 3re 10634 | . . . . . . . . . 10 | |
44 | 4re 10637 | . . . . . . . . . 10 | |
45 | 3lt4 10730 | . . . . . . . . . 10 | |
46 | 43, 44, 45 | ltleii 9728 | . . . . . . . . 9 |
47 | 3nn 10719 | . . . . . . . . . . 11 | |
48 | 47 | nnzi 10913 | . . . . . . . . . 10 |
49 | 48 | eluz1i 11117 | . . . . . . . . 9 |
50 | 42, 46, 49 | mpbir2an 920 | . . . . . . . 8 |
51 | 50 | a1i 11 | . . . . . . 7 |
52 | 4 | simp2bi 1012 | . . . . . . . 8 |
53 | 0re 9617 | . . . . . . . . 9 | |
54 | ltle 9694 | . . . . . . . . 9 | |
55 | 53, 5, 54 | sylancr 663 | . . . . . . . 8 |
56 | 52, 55 | mpd 15 | . . . . . . 7 |
57 | 4 | simp3bi 1013 | . . . . . . 7 |
58 | 5, 41, 51, 56, 57 | leexp2rd 12343 | . . . . . 6 |
59 | 6re 10641 | . . . . . . . 8 | |
60 | 59 | a1i 11 | . . . . . . 7 |
61 | 6pos 10659 | . . . . . . . 8 | |
62 | 61 | a1i 11 | . . . . . . 7 |
63 | lediv1 10432 | . . . . . . 7 | |
64 | 37, 14, 60, 62, 63 | syl112anc 1232 | . . . . . 6 |
65 | 58, 64 | mpbid 210 | . . . . 5 |
66 | 33, 39, 17, 40, 65 | ltletrd 9763 | . . . 4 |
67 | 32, 33, 17, 35, 66 | lelttrd 9761 | . . 3 |
68 | 31, 67 | eqbrtrd 4472 | . 2 |
69 | 10, 18, 17 | absdifltd 13265 | . . 3 |
70 | 17 | recnd 9643 | . . . . . . 7 |
71 | 21, 70, 70 | subsub4d 9985 | . . . . . 6 |
72 | 14 | recnd 9643 | . . . . . . . . . . 11 |
73 | 3cn 10635 | . . . . . . . . . . . . 13 | |
74 | 3ne0 10655 | . . . . . . . . . . . . 13 | |
75 | 73, 74 | pm3.2i 455 | . . . . . . . . . . . 12 |
76 | 2cnne0 10775 | . . . . . . . . . . . 12 | |
77 | divdiv1 10280 | . . . . . . . . . . . 12 | |
78 | 75, 76, 77 | mp3an23 1316 | . . . . . . . . . . 11 |
79 | 72, 78 | syl 16 | . . . . . . . . . 10 |
80 | 3t2e6 10712 | . . . . . . . . . . 11 | |
81 | 80 | oveq2i 6307 | . . . . . . . . . 10 |
82 | 79, 81 | syl6req 2515 | . . . . . . . . 9 |
83 | 82, 82 | oveq12d 6314 | . . . . . . . 8 |
84 | nndivre 10596 | . . . . . . . . . . 11 | |
85 | 14, 47, 84 | sylancl 662 | . . . . . . . . . 10 |
86 | 85 | recnd 9643 | . . . . . . . . 9 |
87 | 86 | 2halvesd 10809 | . . . . . . . 8 |
88 | 83, 87 | eqtrd 2498 | . . . . . . 7 |
89 | 88 | oveq2d 6312 | . . . . . 6 |
90 | 71, 89 | eqtrd 2498 | . . . . 5 |
91 | 90 | breq1d 4462 | . . . 4 |
92 | 21, 70 | npcand 9958 | . . . . 5 |
93 | 92 | breq2d 4464 | . . . 4 |
94 | 91, 93 | anbi12d 710 | . . 3 |
95 | 69, 94 | bitrd 253 | . 2 |
96 | 68, 95 | mpbid 210 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 class class class wbr 4452
e. cmpt 4510 ` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
ci 9515
caddc 9516 cmul 9518 cxr 9648
clt 9649 cle 9650 cmin 9828 cdiv 10231 cn 10561 2 c2 10610 3 c3 10611
4 c4 10612 6 c6 10614 cn0 10820
cz 10889 cuz 11110
cioc 11559
cexp 12166 cfa 12353 cim 12931 cabs 13067 sum_ csu 13508 csin 13799 |
This theorem is referenced by: sinltx 13924 sin01gt0 13925 tangtx 22898 sinccvglem 29038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 ax-addf 9592 ax-mulf 9593 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-4 10621 df-5 10622 df-6 10623 df-7 10624 df-8 10625 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-ioc 11563 df-ico 11564 df-fz 11702 df-fzo 11825 df-fl 11929 df-seq 12108 df-exp 12167 df-fac 12354 df-hash 12406 df-shft 12900 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-limsup 13294 df-clim 13311 df-rlim 13312 df-sum 13509 df-ef 13803 df-sin 13805 |
Copyright terms: Public domain | W3C validator |