MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin4lt0 Unicode version

Theorem sin4lt0 13930
Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin4lt0

Proof of Theorem sin4lt0
StepHypRef Expression
1 2t2e4 10710 . . . 4
21fveq2i 5874 . . 3
3 2cn 10631 . . . 4
4 sin2t 13912 . . . 4
53, 4ax-mp 5 . . 3
62, 5eqtr3i 2488 . 2
7 sincos2sgn 13929 . . . . . . 7
87simpri 462 . . . . . 6
9 2re 10630 . . . . . . . 8
10 recoscl 13876 . . . . . . . 8
119, 10ax-mp 5 . . . . . . 7
12 0re 9617 . . . . . . 7
13 resincl 13875 . . . . . . . . 9
149, 13ax-mp 5 . . . . . . . 8
157simpli 458 . . . . . . . 8
1614, 15pm3.2i 455 . . . . . . 7
17 ltmul2 10418 . . . . . . 7
1811, 12, 16, 17mp3an 1324 . . . . . 6
198, 18mpbi 208 . . . . 5
2014recni 9629 . . . . . 6
2120mul01i 9791 . . . . 5
2219, 21breqtri 4475 . . . 4
2314, 11remulcli 9631 . . . . 5
24 2pos 10652 . . . . . 6
259, 24pm3.2i 455 . . . . 5
26 ltmul2 10418 . . . . 5
2723, 12, 25, 26mp3an 1324 . . . 4
2822, 27mpbi 208 . . 3
293mul01i 9791 . . 3
3028, 29breqtri 4475 . 2
316, 30eqbrtri 4471 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818   class class class wbr 4452  `cfv 5593  (class class class)co 6296   cc 9511   cr 9512  0cc0 9513   cmul 9518   clt 9649  2c2 10610  4c4 10612   csin 13799   ccos 13800
This theorem is referenced by:  pilem3  22848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-inf2 8079  ax-cnex 9569  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-mulcom 9577  ax-addass 9578  ax-mulass 9579  ax-distr 9580  ax-i2m1 9581  ax-1ne0 9582  ax-1rid 9583  ax-rnegex 9584  ax-rrecex 9585  ax-cnre 9586  ax-pre-lttri 9587  ax-pre-lttrn 9588  ax-pre-ltadd 9589  ax-pre-mulgt0 9590  ax-pre-sup 9591  ax-addf 9592  ax-mulf 9593
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-int 4287  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-se 4844  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-1st 6800  df-2nd 6801  df-recs 7061  df-rdg 7095  df-1o 7149  df-oadd 7153  df-er 7330  df-pm 7442  df-en 7537  df-dom 7538  df-sdom 7539  df-fin 7540  df-sup 7921  df-oi 7956  df-card 8341  df-pnf 9651  df-mnf 9652  df-xr 9653  df-ltxr 9654  df-le 9655  df-sub 9830  df-neg 9831  df-div 10232  df-nn 10562  df-2 10619  df-3 10620  df-4 10621  df-5 10622  df-6 10623  df-7 10624  df-8 10625  df-9 10626  df-n0 10821  df-z 10890  df-uz 11111  df-rp 11250  df-ioc 11563  df-ico 11564  df-fz 11702  df-fzo 11825  df-fl 11929  df-seq 12108  df-exp 12167  df-fac 12354  df-bc 12381  df-hash 12406  df-shft 12900  df-cj 12932  df-re 12933  df-im 12934  df-sqrt 13068  df-abs 13069  df-limsup 13294  df-clim 13311  df-rlim 13312  df-sum 13509  df-ef 13803  df-sin 13805  df-cos 13806
  Copyright terms: Public domain W3C validator