![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sincossq | Unicode version |
Description: Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006.) |
Ref | Expression |
---|---|
sincossq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 9843 | . . 3 | |
2 | cosadd 13900 | . . 3 | |
3 | 1, 2 | mpdan 668 | . 2 |
4 | negid 9889 | . . . 4 | |
5 | 4 | fveq2d 5875 | . . 3 |
6 | cos0 13885 | . . 3 | |
7 | 5, 6 | syl6eq 2514 | . 2 |
8 | sincl 13861 | . . . . 5 | |
9 | 8 | sqcld 12308 | . . . 4 |
10 | coscl 13862 | . . . . 5 | |
11 | 10 | sqcld 12308 | . . . 4 |
12 | 9, 11 | addcomd 9803 | . . 3 |
13 | 10 | sqvald 12307 | . . . . 5 |
14 | cosneg 13882 | . . . . . 6 | |
15 | 14 | oveq2d 6312 | . . . . 5 |
16 | 13, 15 | eqtr4d 2501 | . . . 4 |
17 | 8 | sqvald 12307 | . . . . . 6 |
18 | sinneg 13881 | . . . . . . . . 9 | |
19 | 18 | negeqd 9837 | . . . . . . . 8 |
20 | 8 | negnegd 9945 | . . . . . . . 8 |
21 | 19, 20 | eqtrd 2498 | . . . . . . 7 |
22 | 21 | oveq2d 6312 | . . . . . 6 |
23 | 17, 22 | eqtr4d 2501 | . . . . 5 |
24 | 1 | sincld 13865 | . . . . . 6 |
25 | 8, 24 | mulneg2d 10035 | . . . . 5 |
26 | 23, 25 | eqtrd 2498 | . . . 4 |
27 | 16, 26 | oveq12d 6314 | . . 3 |
28 | 1 | coscld 13866 | . . . . 5 |
29 | 10, 28 | mulcld 9637 | . . . 4 |
30 | 8, 24 | mulcld 9637 | . . . 4 |
31 | 29, 30 | negsubd 9960 | . . 3 |
32 | 12, 27, 31 | 3eqtrrd 2503 | . 2 |
33 | 3, 7, 32 | 3eqtr3rd 2507 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 ` cfv 5593 (class class class)co 6296
cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cmin 9828 -u cneg 9829 2 c2 10610
cexp 12166 csin 13799 ccos 13800 |
This theorem is referenced by: cos2t 13913 cos2tsin 13914 sinbnd 13915 cosbnd 13916 absefi 13931 sinhalfpilem 22856 sincos6thpi 22908 efif1olem4 22932 heron 23169 asinsin 23223 atandmtan 23251 basellem8 23361 sin2h 30045 tan2h 30047 dvtan 30065 itgsinexp 31753 onetansqsecsq 33155 cotsqcscsq 33156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 ax-addf 9592 ax-mulf 9593 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-ico 11564 df-fz 11702 df-fzo 11825 df-fl 11929 df-seq 12108 df-exp 12167 df-fac 12354 df-bc 12381 df-hash 12406 df-shft 12900 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-limsup 13294 df-clim 13311 df-rlim 13312 df-sum 13509 df-ef 13803 df-sin 13805 df-cos 13806 |
Copyright terms: Public domain | W3C validator |