MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smodm Unicode version

Theorem smodm 7041
Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smodm

Proof of Theorem smodm
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-smo 7036 . 2
21simp2bi 1012 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  e.wcel 1818  A.wral 2807  Ordword 4882   con0 4883  domcdm 5004  -->wf 5589  `cfv 5593  Smowsmo 7035
This theorem is referenced by:  smores2  7044  smodm2  7045  smoel  7050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-smo 7036
  Copyright terms: Public domain W3C validator