![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > smodm | Unicode version |
Description: The domain of a strictly monotone function is an ordinal. (Contributed by Andrew Salmon, 16-Nov-2011.) |
Ref | Expression |
---|---|
smodm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-smo 7036 | . 2 | |
2 | 1 | simp2bi 1012 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
A. wral 2807 Ord word 4882 con0 4883 dom cdm 5004 --> wf 5589
` cfv 5593 Smo wsmo 7035 |
This theorem is referenced by: smores2 7044 smodm2 7045 smoel 7050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-smo 7036 |
Copyright terms: Public domain | W3C validator |