![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > smoel | Unicode version |
Description: If is less than then a strictly monotone function's value will be strictly less at than at . (Contributed by Andrew Salmon, 22-Nov-2011.) |
Ref | Expression |
---|---|
smoel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smodm 7041 | . . . . 5 | |
2 | ordtr1 4926 | . . . . . . 7 | |
3 | 2 | ancomsd 454 | . . . . . 6 |
4 | 3 | expdimp 437 | . . . . 5 |
5 | 1, 4 | sylan 471 | . . . 4 |
6 | df-smo 7036 | . . . . . 6 | |
7 | eleq1 2529 | . . . . . . . . . . 11 | |
8 | fveq2 5871 | . . . . . . . . . . . 12 | |
9 | 8 | eleq1d 2526 | . . . . . . . . . . 11 |
10 | 7, 9 | imbi12d 320 | . . . . . . . . . 10 |
11 | eleq2 2530 | . . . . . . . . . . 11 | |
12 | fveq2 5871 | . . . . . . . . . . . 12 | |
13 | 12 | eleq2d 2527 | . . . . . . . . . . 11 |
14 | 11, 13 | imbi12d 320 | . . . . . . . . . 10 |
15 | 10, 14 | rspc2v 3219 | . . . . . . . . 9 |
16 | 15 | ancoms 453 | . . . . . . . 8 |
17 | 16 | com12 31 | . . . . . . 7 |
18 | 17 | 3ad2ant3 1019 | . . . . . 6 |
19 | 6, 18 | sylbi 195 | . . . . 5 |
20 | 19 | expdimp 437 | . . . 4 |
21 | 5, 20 | syld 44 | . . 3 |
22 | 21 | pm2.43d 48 | . 2 |
23 | 22 | 3impia 1193 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 Ord word 4882 con0 4883 dom cdm 5004 --> wf 5589
` cfv 5593 Smo wsmo 7035 |
This theorem is referenced by: smoiun 7051 smoel2 7053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-tr 4546 df-ord 4886 df-iota 5556 df-fv 5601 df-smo 7036 |
Copyright terms: Public domain | W3C validator |