MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoeq Unicode version

Theorem smoeq 7040
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq

Proof of Theorem smoeq
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4
2 dmeq 5208 . . . 4
31, 2feq12d 5725 . . 3
4 ordeq 4890 . . . 4
52, 4syl 16 . . 3
6 fveq1 5870 . . . . . . 7
7 fveq1 5870 . . . . . . 7
86, 7eleq12d 2539 . . . . . 6
98imbi2d 316 . . . . 5
1092ralbidv 2901 . . . 4
112raleqdv 3060 . . . . 5
1211ralbidv 2896 . . . 4
132raleqdv 3060 . . . 4
1410, 12, 133bitrd 279 . . 3
153, 5, 143anbi123d 1299 . 2
16 df-smo 7036 . 2
17 df-smo 7036 . 2
1815, 16, 173bitr4g 288 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\w3a 973  =wceq 1395  e.wcel 1818  A.wral 2807  Ordword 4882   con0 4883  domcdm 5004  -->wf 5589  `cfv 5593  Smowsmo 7035
This theorem is referenced by:  smores3  7043  smo0  7048  cofsmo  8670  cfsmolem  8671  alephsing  8677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-tr 4546  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-fv 5601  df-smo 7036
  Copyright terms: Public domain W3C validator