![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > smoiso | Unicode version |
Description: If is an isomorphism from an ordinal onto , which is a subset of the ordinals, then is a strictly monotonic function. Exercise 3 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 24-Nov-2011.) |
Ref | Expression |
---|---|
smoiso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isof1o 6221 | . . . 4 | |
2 | f1of 5821 | . . . 4 | |
3 | 1, 2 | syl 16 | . . 3 |
4 | ffdm 5750 | . . . . . 6 | |
5 | 4 | simpld 459 | . . . . 5 |
6 | fss 5744 | . . . . 5 | |
7 | 5, 6 | sylan 471 | . . . 4 |
8 | 7 | 3adant2 1015 | . . 3 |
9 | 3, 8 | syl3an1 1261 | . 2 |
10 | fdm 5740 | . . . . . 6 | |
11 | 10 | eqcomd 2465 | . . . . 5 |
12 | ordeq 4890 | . . . . 5 | |
13 | 1, 2, 11, 12 | 4syl 21 | . . . 4 |
14 | 13 | biimpa 484 | . . 3 |
15 | 14 | 3adant3 1016 | . 2 |
16 | 10 | eleq2d 2527 | . . . . . . 7 |
17 | 10 | eleq2d 2527 | . . . . . . 7 |
18 | 16, 17 | anbi12d 710 | . . . . . 6 |
19 | 1, 2, 18 | 3syl 20 | . . . . 5 |
20 | isorel 6222 | . . . . . . . 8 | |
21 | epel 4799 | . . . . . . . 8 | |
22 | fvex 5881 | . . . . . . . . 9 | |
23 | 22 | epelc 4798 | . . . . . . . 8 |
24 | 20, 21, 23 | 3bitr3g 287 | . . . . . . 7 |
25 | 24 | biimpd 207 | . . . . . 6 |
26 | 25 | ex 434 | . . . . 5 |
27 | 19, 26 | sylbid 215 | . . . 4 |
28 | 27 | ralrimivv 2877 | . . 3 |
29 | 28 | 3ad2ant1 1017 | . 2 |
30 | df-smo 7036 | . 2 | |
31 | 9, 15, 29, 30 | syl3anbrc 1180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 C_ wss 3475
class class class wbr 4452 cep 4794
Ord word 4882
con0 4883 dom cdm 5004 --> wf 5589
-1-1-onto-> wf1o 5592
` cfv 5593 Isom wiso 5594 Smo wsmo 7035 |
This theorem is referenced by: smoiso2 7059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-iota 5556 df-fn 5596 df-f 5597 df-f1 5598 df-f1o 5600 df-fv 5601 df-isom 5602 df-smo 7036 |
Copyright terms: Public domain | W3C validator |