![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > smores2 | Unicode version |
Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
Ref | Expression |
---|---|
smores2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsmo2 7037 | . . . . . . 7 | |
2 | 1 | simp1bi 1011 | . . . . . 6 |
3 | ffun 5738 | . . . . . 6 | |
4 | 2, 3 | syl 16 | . . . . 5 |
5 | funres 5632 | . . . . . 6 | |
6 | funfn 5622 | . . . . . 6 | |
7 | 5, 6 | sylib 196 | . . . . 5 |
8 | 4, 7 | syl 16 | . . . 4 |
9 | df-ima 5017 | . . . . . 6 | |
10 | imassrn 5353 | . . . . . 6 | |
11 | 9, 10 | eqsstr3i 3534 | . . . . 5 |
12 | frn 5742 | . . . . . 6 | |
13 | 2, 12 | syl 16 | . . . . 5 |
14 | 11, 13 | syl5ss 3514 | . . . 4 |
15 | df-f 5597 | . . . 4 | |
16 | 8, 14, 15 | sylanbrc 664 | . . 3 |
17 | 16 | adantr 465 | . 2 |
18 | smodm 7041 | . . 3 | |
19 | ordin 4913 | . . . . 5 | |
20 | dmres 5299 | . . . . . 6 | |
21 | ordeq 4890 | . . . . . 6 | |
22 | 20, 21 | ax-mp 5 | . . . . 5 |
23 | 19, 22 | sylibr 212 | . . . 4 |
24 | 23 | ancoms 453 | . . 3 |
25 | 18, 24 | sylan 471 | . 2 |
26 | resss 5302 | . . . . . 6 | |
27 | dmss 5207 | . . . . . 6 | |
28 | 26, 27 | ax-mp 5 | . . . . 5 |
29 | 1 | simp3bi 1013 | . . . . 5 |
30 | ssralv 3563 | . . . . 5 | |
31 | 28, 29, 30 | mpsyl 63 | . . . 4 |
32 | 31 | adantr 465 | . . 3 |
33 | ordtr1 4926 | . . . . . . . . . . 11 | |
34 | 25, 33 | syl 16 | . . . . . . . . . 10 |
35 | inss1 3717 | . . . . . . . . . . . 12 | |
36 | 20, 35 | eqsstri 3533 | . . . . . . . . . . 11 |
37 | 36 | sseli 3499 | . . . . . . . . . 10 |
38 | 34, 37 | syl6 33 | . . . . . . . . 9 |
39 | 38 | expcomd 438 | . . . . . . . 8 |
40 | 39 | imp31 432 | . . . . . . 7 |
41 | fvres 5885 | . . . . . . 7 | |
42 | 40, 41 | syl 16 | . . . . . 6 |
43 | 36 | sseli 3499 | . . . . . . . 8 |
44 | fvres 5885 | . . . . . . . 8 | |
45 | 43, 44 | syl 16 | . . . . . . 7 |
46 | 45 | ad2antlr 726 | . . . . . 6 |
47 | 42, 46 | eleq12d 2539 | . . . . 5 |
48 | 47 | ralbidva 2893 | . . . 4 |
49 | 48 | ralbidva 2893 | . . 3 |
50 | 32, 49 | mpbird 232 | . 2 |
51 | dfsmo2 7037 | . 2 | |
52 | 17, 25, 50, 51 | syl3anbrc 1180 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 i^i cin 3474 C_ wss 3475
Ord word 4882
con0 4883 dom cdm 5004 ran crn 5005
|` cres 5006 " cima 5007 Fun wfun 5587
Fn wfn 5588 --> wf 5589 ` cfv 5593
Smo wsmo 7035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-smo 7036 |
Copyright terms: Public domain | W3C validator |