![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > smumul | Unicode version |
Description: For sequences that
correspond to valid integers, the sequence
multiplication function produces the sequence for the product. This is
effectively a proof of the correctness of the multiplication process,
implemented in terms of logic gates for df-sad 14101, whose correctness is
verified in sadadd 14117.
Outside this range, the sequences cannot be representing integers, but the function still "works". This extended function is best interpreted in terms of the ring structure of the 2-adic integers. (Contributed by Mario Carneiro, 22-Sep-2016.) |
Ref | Expression |
---|---|
smumul |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitsss 14076 | . . . . . 6 | |
2 | bitsss 14076 | . . . . . 6 | |
3 | smucl 14134 | . . . . . 6 | |
4 | 1, 2, 3 | mp2an 672 | . . . . 5 |
5 | 4 | sseli 3499 | . . . 4 |
6 | 5 | a1i 11 | . . 3 |
7 | bitsss 14076 | . . . . 5 | |
8 | 7 | sseli 3499 | . . . 4 |
9 | 8 | a1i 11 | . . 3 |
10 | simpll 753 | . . . . . . . . . . . 12 | |
11 | simplr 755 | . . . . . . . . . . . 12 | |
12 | simpr 461 | . . . . . . . . . . . . 13 | |
13 | 1nn0 10836 | . . . . . . . . . . . . . 14 | |
14 | 13 | a1i 11 | . . . . . . . . . . . . 13 |
15 | 12, 14 | nn0addcld 10881 | . . . . . . . . . . . 12 |
16 | 10, 11, 15 | smumullem 14142 | . . . . . . . . . . 11 |
17 | 16 | ineq1d 3698 | . . . . . . . . . 10 |
18 | 2nn 10718 | . . . . . . . . . . . . . . . 16 | |
19 | 18 | a1i 11 | . . . . . . . . . . . . . . 15 |
20 | 19, 15 | nnexpcld 12331 | . . . . . . . . . . . . . 14 |
21 | 10, 20 | zmodcld 12016 | . . . . . . . . . . . . 13 |
22 | 21 | nn0zd 10992 | . . . . . . . . . . . 12 |
23 | 22, 11 | zmulcld 11000 | . . . . . . . . . . 11 |
24 | bitsmod 14086 | . . . . . . . . . . 11 | |
25 | 23, 15, 24 | syl2anc 661 | . . . . . . . . . 10 |
26 | 17, 25 | eqtr4d 2501 | . . . . . . . . 9 |
27 | inass 3707 | . . . . . . . . . . . . 13 | |
28 | inidm 3706 | . . . . . . . . . . . . . 14 | |
29 | 28 | ineq2i 3696 | . . . . . . . . . . . . 13 |
30 | 27, 29 | eqtri 2486 | . . . . . . . . . . . 12 |
31 | 30 | oveq1i 6306 | . . . . . . . . . . 11 |
32 | 31 | ineq1i 3695 | . . . . . . . . . 10 |
33 | inss1 3717 | . . . . . . . . . . . 12 | |
34 | 1 | a1i 11 | . . . . . . . . . . . 12 |
35 | 33, 34 | syl5ss 3514 | . . . . . . . . . . 11 |
36 | 2 | a1i 11 | . . . . . . . . . . 11 |
37 | 35, 36, 15 | smueq 14141 | . . . . . . . . . 10 |
38 | 34, 36, 15 | smueq 14141 | . . . . . . . . . 10 |
39 | 32, 37, 38 | 3eqtr4a 2524 | . . . . . . . . 9 |
40 | 20 | nnrpd 11284 | . . . . . . . . . . 11 |
41 | 10 | zred 10994 | . . . . . . . . . . . 12 |
42 | modabs2 12030 | . . . . . . . . . . . 12 | |
43 | 41, 40, 42 | syl2anc 661 | . . . . . . . . . . 11 |
44 | eqidd 2458 | . . . . . . . . . . 11 | |
45 | 22, 10, 11, 11, 40, 43, 44 | modmul12d 12041 | . . . . . . . . . 10 |
46 | 45 | fveq2d 5875 | . . . . . . . . 9 |
47 | 26, 39, 46 | 3eqtr3d 2506 | . . . . . . . 8 |
48 | 10, 11 | zmulcld 11000 | . . . . . . . . 9 |
49 | bitsmod 14086 | . . . . . . . . 9 | |
50 | 48, 15, 49 | syl2anc 661 | . . . . . . . 8 |
51 | 47, 50 | eqtrd 2498 | . . . . . . 7 |
52 | 51 | eleq2d 2527 | . . . . . 6 |
53 | elin 3686 | . . . . . 6 | |
54 | elin 3686 | . . . . . 6 | |
55 | 52, 53, 54 | 3bitr3g 287 | . . . . 5 |
56 | nn0uz 11144 | . . . . . . . . 9 | |
57 | 12, 56 | syl6eleq 2555 | . . . . . . . 8 |
58 | eluzfz2b 11724 | . . . . . . . 8 | |
59 | 57, 58 | sylib 196 | . . . . . . 7 |
60 | 12 | nn0zd 10992 | . . . . . . . 8 |
61 | fzval3 11885 | . . . . . . . 8 | |
62 | 60, 61 | syl 16 | . . . . . . 7 |
63 | 59, 62 | eleqtrd 2547 | . . . . . 6 |
64 | 63 | biantrud 507 | . . . . 5 |
65 | 63 | biantrud 507 | . . . . 5 |
66 | 55, 64, 65 | 3bitr4d 285 | . . . 4 |
67 | 66 | ex 434 | . . 3 |
68 | 6, 9, 67 | pm5.21ndd 354 | . 2 |
69 | 68 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
i^i cin 3474 C_ wss 3475 ` cfv 5593
(class class class)co 6296 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cn 10561 2 c2 10610 cn0 10820
cz 10889 cuz 11110
crp 11249
cfz 11701 cfzo 11824 cmo 11996 cexp 12166 cbits 14069 csmu 14071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-xor 1364 df-tru 1398 df-fal 1401 df-had 1447 df-cad 1448 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-disj 4423 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 df-dvds 13987 df-bits 14072 df-sad 14101 df-smu 14126 |
Copyright terms: Public domain | W3C validator |