MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snelpw Unicode version

Theorem snelpw 4698
Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.)
Hypothesis
Ref Expression
snelpw.1
Assertion
Ref Expression
snelpw

Proof of Theorem snelpw
StepHypRef Expression
1 snelpw.1 . . 3
21snss 4154 . 2
3 snex 4693 . . 3
43elpw 4018 . 2
52, 4bitr4i 252 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  e.wcel 1818   cvv 3109  C_wss 3475  ~Pcpw 4012  {csn 4029
This theorem is referenced by:  dis2ndc  19961  dislly  19998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-pw 4014  df-sn 4030  df-pr 4032
  Copyright terms: Public domain W3C validator