![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > snsn0non | Unicode version |
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 6704). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 5088. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
snsn0non |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p0ex 4639 | . . . . 5 | |
2 | 1 | snid 4057 | . . . 4 |
3 | n0i 3789 | . . . 4 | |
4 | 2, 3 | ax-mp 5 | . . 3 |
5 | 0ex 4582 | . . . . . . 7 | |
6 | 5 | snid 4057 | . . . . . 6 |
7 | n0i 3789 | . . . . . 6 | |
8 | 6, 7 | ax-mp 5 | . . . . 5 |
9 | eqcom 2466 | . . . . 5 | |
10 | 8, 9 | mtbir 299 | . . . 4 |
11 | 5 | elsnc 4053 | . . . 4 |
12 | 10, 11 | mtbir 299 | . . 3 |
13 | 4, 12 | pm3.2ni 854 | . 2 |
14 | on0eqel 5000 | . 2 | |
15 | 13, 14 | mto 176 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 \/ wo 368
= wceq 1395 e. wcel 1818 c0 3784 { csn 4029 con0 4883 |
This theorem is referenced by: onnev 5089 onpsstopbas 29895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 |
Copyright terms: Public domain | W3C validator |