![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > snsssn | Unicode version |
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) |
Ref | Expression |
---|---|
sneqr.1 |
Ref | Expression |
---|---|
snsssn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn 4188 | . 2 | |
2 | sneqr.1 | . . . . . 6 | |
3 | 2 | snnz 4148 | . . . . 5 |
4 | 3 | neii 2656 | . . . 4 |
5 | 4 | pm2.21i 131 | . . 3 |
6 | 2 | sneqr 4197 | . . 3 |
7 | 5, 6 | jaoi 379 | . 2 |
8 | 1, 7 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
= wceq 1395 e. wcel 1818 cvv 3109
C_ wss 3475 c0 3784 { csn 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-sn 4030 |
Copyright terms: Public domain | W3C validator |